Loading…
An efficient phase-field model of shear fractures using deviatoric stress split
We propose a phase-field model of shear fractures using the deviatoric stress decomposition. This choice allows us to use general three-dimensional Mohr–Coulomb’s failure function for formulating the relations and evaluating peak and residual stresses. We apply the model to a few benchmark problems...
Saved in:
Published in: | Computational mechanics 2023-12, Vol.72 (6), p.1263-1278 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-dbf30bee6c4e3a7afc7569fb480cc0d6f3b550de1d5d31b34239e9cd18f64fb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-dbf30bee6c4e3a7afc7569fb480cc0d6f3b550de1d5d31b34239e9cd18f64fb03 |
container_end_page | 1278 |
container_issue | 6 |
container_start_page | 1263 |
container_title | Computational mechanics |
container_volume | 72 |
creator | Haghighat, Ehsan Santillán, David |
description | We propose a phase-field model of shear fractures using the deviatoric stress decomposition. This choice allows us to use general three-dimensional Mohr–Coulomb’s failure function for formulating the relations and evaluating peak and residual stresses. We apply the model to a few benchmark problems of shear fracture and strain localization and report remarkable performance. Our model is able to capture
conjugate
failure modes under biaxial compression test and for the slope stability problem, a challenging task for most models of geomechanics. |
doi_str_mv | 10.1007/s00466-023-02348-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890160488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890160488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-dbf30bee6c4e3a7afc7569fb480cc0d6f3b550de1d5d31b34239e9cd18f64fb03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJk6btcVn8goW96DmkyWQ3S7etSSv47-1awZuHYWB43nfgIeSWwz0HKB4SgFSKQSZOI0vGz8iCS5ExqDJ5ThbAi5IVqsgvyVVKBwCelyJfkO2qpeh9sAHbgfZ7k5D5gI2jx85hQztP0x5NpD4aO4wREx1TaHfU4WcwQxeDpWmYzommvgnDNbnwpkl487uX5P3p8W39wjbb59f1asOsUGJgrvYCakRlJQpTGG-LXFW-liVYC055Uec5OOQud4LXQmaiwso6XnolfQ1iSe7m3j52HyOmQR-6MbbTS52VFXAFsiwnKpspG7uUInrdx3A08Utz0CdxehanJ2n6R5zmU0jMoTTB7Q7jX_U_qW9xPXHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890160488</pqid></control><display><type>article</type><title>An efficient phase-field model of shear fractures using deviatoric stress split</title><source>Springer Nature</source><creator>Haghighat, Ehsan ; Santillán, David</creator><creatorcontrib>Haghighat, Ehsan ; Santillán, David</creatorcontrib><description>We propose a phase-field model of shear fractures using the deviatoric stress decomposition. This choice allows us to use general three-dimensional Mohr–Coulomb’s failure function for formulating the relations and evaluating peak and residual stresses. We apply the model to a few benchmark problems of shear fracture and strain localization and report remarkable performance. Our model is able to capture
conjugate
failure modes under biaxial compression test and for the slope stability problem, a challenging task for most models of geomechanics.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-023-02348-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Computational Science and Engineering ; Crack propagation ; Decomposition ; Energy ; Engineering ; Failure modes ; Fault lines ; Fractures ; Geomechanics ; Localization ; Mechanics ; Mohr-Coulomb theory ; Original Paper ; Residual stress ; Shear ; Slope stability ; Strain localization ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2023-12, Vol.72 (6), p.1263-1278</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-dbf30bee6c4e3a7afc7569fb480cc0d6f3b550de1d5d31b34239e9cd18f64fb03</citedby><cites>FETCH-LOGICAL-c363t-dbf30bee6c4e3a7afc7569fb480cc0d6f3b550de1d5d31b34239e9cd18f64fb03</cites><orcidid>0000-0002-9749-0522 ; 0000-0003-2659-0507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haghighat, Ehsan</creatorcontrib><creatorcontrib>Santillán, David</creatorcontrib><title>An efficient phase-field model of shear fractures using deviatoric stress split</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>We propose a phase-field model of shear fractures using the deviatoric stress decomposition. This choice allows us to use general three-dimensional Mohr–Coulomb’s failure function for formulating the relations and evaluating peak and residual stresses. We apply the model to a few benchmark problems of shear fracture and strain localization and report remarkable performance. Our model is able to capture
conjugate
failure modes under biaxial compression test and for the slope stability problem, a challenging task for most models of geomechanics.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Crack propagation</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Engineering</subject><subject>Failure modes</subject><subject>Fault lines</subject><subject>Fractures</subject><subject>Geomechanics</subject><subject>Localization</subject><subject>Mechanics</subject><subject>Mohr-Coulomb theory</subject><subject>Original Paper</subject><subject>Residual stress</subject><subject>Shear</subject><subject>Slope stability</subject><subject>Strain localization</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJk6btcVn8goW96DmkyWQ3S7etSSv47-1awZuHYWB43nfgIeSWwz0HKB4SgFSKQSZOI0vGz8iCS5ExqDJ5ThbAi5IVqsgvyVVKBwCelyJfkO2qpeh9sAHbgfZ7k5D5gI2jx85hQztP0x5NpD4aO4wREx1TaHfU4WcwQxeDpWmYzommvgnDNbnwpkl487uX5P3p8W39wjbb59f1asOsUGJgrvYCakRlJQpTGG-LXFW-liVYC055Uec5OOQud4LXQmaiwso6XnolfQ1iSe7m3j52HyOmQR-6MbbTS52VFXAFsiwnKpspG7uUInrdx3A08Utz0CdxehanJ2n6R5zmU0jMoTTB7Q7jX_U_qW9xPXHE</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Haghighat, Ehsan</creator><creator>Santillán, David</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9749-0522</orcidid><orcidid>https://orcid.org/0000-0003-2659-0507</orcidid></search><sort><creationdate>20231201</creationdate><title>An efficient phase-field model of shear fractures using deviatoric stress split</title><author>Haghighat, Ehsan ; Santillán, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-dbf30bee6c4e3a7afc7569fb480cc0d6f3b550de1d5d31b34239e9cd18f64fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Crack propagation</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Engineering</topic><topic>Failure modes</topic><topic>Fault lines</topic><topic>Fractures</topic><topic>Geomechanics</topic><topic>Localization</topic><topic>Mechanics</topic><topic>Mohr-Coulomb theory</topic><topic>Original Paper</topic><topic>Residual stress</topic><topic>Shear</topic><topic>Slope stability</topic><topic>Strain localization</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghighat, Ehsan</creatorcontrib><creatorcontrib>Santillán, David</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghighat, Ehsan</au><au>Santillán, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient phase-field model of shear fractures using deviatoric stress split</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>72</volume><issue>6</issue><spage>1263</spage><epage>1278</epage><pages>1263-1278</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>We propose a phase-field model of shear fractures using the deviatoric stress decomposition. This choice allows us to use general three-dimensional Mohr–Coulomb’s failure function for formulating the relations and evaluating peak and residual stresses. We apply the model to a few benchmark problems of shear fracture and strain localization and report remarkable performance. Our model is able to capture
conjugate
failure modes under biaxial compression test and for the slope stability problem, a challenging task for most models of geomechanics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-023-02348-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9749-0522</orcidid><orcidid>https://orcid.org/0000-0003-2659-0507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2023-12, Vol.72 (6), p.1263-1278 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2890160488 |
source | Springer Nature |
subjects | Boundary conditions Classical and Continuum Physics Computational Science and Engineering Crack propagation Decomposition Energy Engineering Failure modes Fault lines Fractures Geomechanics Localization Mechanics Mohr-Coulomb theory Original Paper Residual stress Shear Slope stability Strain localization Theoretical and Applied Mechanics |
title | An efficient phase-field model of shear fractures using deviatoric stress split |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20phase-field%20model%20of%20shear%20fractures%20using%20deviatoric%20stress%20split&rft.jtitle=Computational%20mechanics&rft.au=Haghighat,%20Ehsan&rft.date=2023-12-01&rft.volume=72&rft.issue=6&rft.spage=1263&rft.epage=1278&rft.pages=1263-1278&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-023-02348-1&rft_dat=%3Cproquest_cross%3E2890160488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-dbf30bee6c4e3a7afc7569fb480cc0d6f3b550de1d5d31b34239e9cd18f64fb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890160488&rft_id=info:pmid/&rfr_iscdi=true |