Loading…

Numerical simulation of the effect of water-decoupling charge blasting on reservoir permeability enhancement

In the development of deep resources, blasting fracturing technology is one of the most effective means to improve the permeability of otherwise low-permeability reservoirs, while the pressure rise time of shock wave and the charge structure are the key factors affecting the blasting effect. Thus, t...

Full description

Saved in:
Bibliographic Details
Published in:Geomatics, natural hazards and risk natural hazards and risk, 2022-12, Vol.13 (1), p.2356-2384
Main Authors: Wang, Wen, Wang, Wei, Yuan, Wei, Zhou, Genmao, Feng, Xiaoqiao, Liang, Xuanyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-2c23ba7f1cec3b2dc45da8e2cd10ff29affe06e4725165c45d763779918569583
cites cdi_FETCH-LOGICAL-c451t-2c23ba7f1cec3b2dc45da8e2cd10ff29affe06e4725165c45d763779918569583
container_end_page 2384
container_issue 1
container_start_page 2356
container_title Geomatics, natural hazards and risk
container_volume 13
creator Wang, Wen
Wang, Wei
Yuan, Wei
Zhou, Genmao
Feng, Xiaoqiao
Liang, Xuanyu
description In the development of deep resources, blasting fracturing technology is one of the most effective means to improve the permeability of otherwise low-permeability reservoirs, while the pressure rise time of shock wave and the charge structure are the key factors affecting the blasting effect. Thus, this paper first deduces a formula for the pressure rise time, based on which, the blast-induced damage evolution is numerically simulated, and the numerical result is consistent with the existing studies, which verifies the feasibility of the formula. In addition, the influence of decoupling coefficients (K) of different types of explosives (i.e. TNT, emulsion, and ANFO explosives) on the damage range of reservoir blasting is studied. It is found that under the blasting of different types of explosives, the damage evolution law of the reservoir is different, and appropriate explosives should be selected in combination with rock stratum parameters in actual construction. Finally, the increase in permeability and the drainage effect of the reservoir after blasting are quantified by numerical simulations. It is demonstrated the average permeability increment of the reservoir under the action of TNT explosive is the largest, which is 3.08 (K = 4), while that under the action of emulsion explosive and ANFO explosive are 1.49 (K = 2) and 1.17 (K = 3) respectively; and the changes in reservoir permeability and drainage volume are coherent with the range of damage; the greater the range of damage, the greater the reservoir permeability and the greater the drainage efficiency.
doi_str_mv 10.1080/19475705.2022.2117653
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2890236576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_197f382697934defa04175af670ec68d</doaj_id><sourcerecordid>2890236576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-2c23ba7f1cec3b2dc45da8e2cd10ff29affe06e4725165c45d763779918569583</originalsourceid><addsrcrecordid>eNp9UU1v2zAMNYYNaJH1JxQwsLMzfViWddtQ7KNAsV22s8DIVKJAtjJKXpF_P3tpeywvJJ_0Hgm-qrrlbMtZzz5y02qlmdoKJsRWcK47Jd9U1yveKM3l25eaqavqJucjW0KKXrP2uoo_5hEpOIh1DuMcoYQ01cnX5YA1eo-urN0jFKRmQJfmUwzTvnYHoD3Wuwi5rP1CIsxIf1Og-oQ0IuxCDOVc43SAyeGIU3lfvfMQM9485U31--uXX3ffm4ef3-7vPj80rlW8NMIJuQPtuUMnd2JY0AF6FG7gzHthYFmLddhqoXin1lfdSa2N4b3qjOrlprq_6A4JjvZEYQQ62wTB_gcS7S1QCS6i5UZ72YvOaCPbAT2wlmsFvtMMXdcPi9aHi9aJ0p8Zc7HHNNO0rG9Fb5iQnVqmbyp1-eUo5UzoX6ZyZlef7LNPdvXJPvm08D5deGHyiUZ4TBQHW-AcE3la7hayla9L_AMX9ZpU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890236576</pqid></control><display><type>article</type><title>Numerical simulation of the effect of water-decoupling charge blasting on reservoir permeability enhancement</title><source>Taylor &amp; Francis</source><creator>Wang, Wen ; Wang, Wei ; Yuan, Wei ; Zhou, Genmao ; Feng, Xiaoqiao ; Liang, Xuanyu</creator><creatorcontrib>Wang, Wen ; Wang, Wei ; Yuan, Wei ; Zhou, Genmao ; Feng, Xiaoqiao ; Liang, Xuanyu</creatorcontrib><description>In the development of deep resources, blasting fracturing technology is one of the most effective means to improve the permeability of otherwise low-permeability reservoirs, while the pressure rise time of shock wave and the charge structure are the key factors affecting the blasting effect. Thus, this paper first deduces a formula for the pressure rise time, based on which, the blast-induced damage evolution is numerically simulated, and the numerical result is consistent with the existing studies, which verifies the feasibility of the formula. In addition, the influence of decoupling coefficients (K) of different types of explosives (i.e. TNT, emulsion, and ANFO explosives) on the damage range of reservoir blasting is studied. It is found that under the blasting of different types of explosives, the damage evolution law of the reservoir is different, and appropriate explosives should be selected in combination with rock stratum parameters in actual construction. Finally, the increase in permeability and the drainage effect of the reservoir after blasting are quantified by numerical simulations. It is demonstrated the average permeability increment of the reservoir under the action of TNT explosive is the largest, which is 3.08 (K = 4), while that under the action of emulsion explosive and ANFO explosive are 1.49 (K = 2) and 1.17 (K = 3) respectively; and the changes in reservoir permeability and drainage volume are coherent with the range of damage; the greater the range of damage, the greater the reservoir permeability and the greater the drainage efficiency.</description><identifier>ISSN: 1947-5705</identifier><identifier>EISSN: 1947-5713</identifier><identifier>DOI: 10.1080/19475705.2022.2117653</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>2,4,6-Trinitrotoluene ; Blasting ; Blasting (explosive) ; blasting damage ; Blasting-enhanced permeability ; Coefficients ; Damage ; Decoupling ; decoupling coefficients ; Drainage ; Drainage effects ; Drainage measurement ; Emulsions ; Evolution ; Explosions ; Explosives ; Feasibility studies ; Mathematical models ; Numerical simulations ; Permeability ; pressure rise time ; reservoir drainage ; Reservoirs ; Shock waves ; Simulation</subject><ispartof>Geomatics, natural hazards and risk, 2022-12, Vol.13 (1), p.2356-2384</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-2c23ba7f1cec3b2dc45da8e2cd10ff29affe06e4725165c45d763779918569583</citedby><cites>FETCH-LOGICAL-c451t-2c23ba7f1cec3b2dc45da8e2cd10ff29affe06e4725165c45d763779918569583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19475705.2022.2117653$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19475705.2022.2117653$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Zhou, Genmao</creatorcontrib><creatorcontrib>Feng, Xiaoqiao</creatorcontrib><creatorcontrib>Liang, Xuanyu</creatorcontrib><title>Numerical simulation of the effect of water-decoupling charge blasting on reservoir permeability enhancement</title><title>Geomatics, natural hazards and risk</title><description>In the development of deep resources, blasting fracturing technology is one of the most effective means to improve the permeability of otherwise low-permeability reservoirs, while the pressure rise time of shock wave and the charge structure are the key factors affecting the blasting effect. Thus, this paper first deduces a formula for the pressure rise time, based on which, the blast-induced damage evolution is numerically simulated, and the numerical result is consistent with the existing studies, which verifies the feasibility of the formula. In addition, the influence of decoupling coefficients (K) of different types of explosives (i.e. TNT, emulsion, and ANFO explosives) on the damage range of reservoir blasting is studied. It is found that under the blasting of different types of explosives, the damage evolution law of the reservoir is different, and appropriate explosives should be selected in combination with rock stratum parameters in actual construction. Finally, the increase in permeability and the drainage effect of the reservoir after blasting are quantified by numerical simulations. It is demonstrated the average permeability increment of the reservoir under the action of TNT explosive is the largest, which is 3.08 (K = 4), while that under the action of emulsion explosive and ANFO explosive are 1.49 (K = 2) and 1.17 (K = 3) respectively; and the changes in reservoir permeability and drainage volume are coherent with the range of damage; the greater the range of damage, the greater the reservoir permeability and the greater the drainage efficiency.</description><subject>2,4,6-Trinitrotoluene</subject><subject>Blasting</subject><subject>Blasting (explosive)</subject><subject>blasting damage</subject><subject>Blasting-enhanced permeability</subject><subject>Coefficients</subject><subject>Damage</subject><subject>Decoupling</subject><subject>decoupling coefficients</subject><subject>Drainage</subject><subject>Drainage effects</subject><subject>Drainage measurement</subject><subject>Emulsions</subject><subject>Evolution</subject><subject>Explosions</subject><subject>Explosives</subject><subject>Feasibility studies</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Permeability</subject><subject>pressure rise time</subject><subject>reservoir drainage</subject><subject>Reservoirs</subject><subject>Shock waves</subject><subject>Simulation</subject><issn>1947-5705</issn><issn>1947-5713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v2zAMNYYNaJH1JxQwsLMzfViWddtQ7KNAsV22s8DIVKJAtjJKXpF_P3tpeywvJJ_0Hgm-qrrlbMtZzz5y02qlmdoKJsRWcK47Jd9U1yveKM3l25eaqavqJucjW0KKXrP2uoo_5hEpOIh1DuMcoYQ01cnX5YA1eo-urN0jFKRmQJfmUwzTvnYHoD3Wuwi5rP1CIsxIf1Og-oQ0IuxCDOVc43SAyeGIU3lfvfMQM9485U31--uXX3ffm4ef3-7vPj80rlW8NMIJuQPtuUMnd2JY0AF6FG7gzHthYFmLddhqoXin1lfdSa2N4b3qjOrlprq_6A4JjvZEYQQ62wTB_gcS7S1QCS6i5UZ72YvOaCPbAT2wlmsFvtMMXdcPi9aHi9aJ0p8Zc7HHNNO0rG9Fb5iQnVqmbyp1-eUo5UzoX6ZyZlef7LNPdvXJPvm08D5deGHyiUZ4TBQHW-AcE3la7hayla9L_AMX9ZpU</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Wang, Wen</creator><creator>Wang, Wei</creator><creator>Yuan, Wei</creator><creator>Zhou, Genmao</creator><creator>Feng, Xiaoqiao</creator><creator>Liang, Xuanyu</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20221231</creationdate><title>Numerical simulation of the effect of water-decoupling charge blasting on reservoir permeability enhancement</title><author>Wang, Wen ; Wang, Wei ; Yuan, Wei ; Zhou, Genmao ; Feng, Xiaoqiao ; Liang, Xuanyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-2c23ba7f1cec3b2dc45da8e2cd10ff29affe06e4725165c45d763779918569583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2,4,6-Trinitrotoluene</topic><topic>Blasting</topic><topic>Blasting (explosive)</topic><topic>blasting damage</topic><topic>Blasting-enhanced permeability</topic><topic>Coefficients</topic><topic>Damage</topic><topic>Decoupling</topic><topic>decoupling coefficients</topic><topic>Drainage</topic><topic>Drainage effects</topic><topic>Drainage measurement</topic><topic>Emulsions</topic><topic>Evolution</topic><topic>Explosions</topic><topic>Explosives</topic><topic>Feasibility studies</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Permeability</topic><topic>pressure rise time</topic><topic>reservoir drainage</topic><topic>Reservoirs</topic><topic>Shock waves</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Zhou, Genmao</creatorcontrib><creatorcontrib>Feng, Xiaoqiao</creatorcontrib><creatorcontrib>Liang, Xuanyu</creatorcontrib><collection>Taylor &amp; Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Geomatics, natural hazards and risk</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wen</au><au>Wang, Wei</au><au>Yuan, Wei</au><au>Zhou, Genmao</au><au>Feng, Xiaoqiao</au><au>Liang, Xuanyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of the effect of water-decoupling charge blasting on reservoir permeability enhancement</atitle><jtitle>Geomatics, natural hazards and risk</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>2356</spage><epage>2384</epage><pages>2356-2384</pages><issn>1947-5705</issn><eissn>1947-5713</eissn><abstract>In the development of deep resources, blasting fracturing technology is one of the most effective means to improve the permeability of otherwise low-permeability reservoirs, while the pressure rise time of shock wave and the charge structure are the key factors affecting the blasting effect. Thus, this paper first deduces a formula for the pressure rise time, based on which, the blast-induced damage evolution is numerically simulated, and the numerical result is consistent with the existing studies, which verifies the feasibility of the formula. In addition, the influence of decoupling coefficients (K) of different types of explosives (i.e. TNT, emulsion, and ANFO explosives) on the damage range of reservoir blasting is studied. It is found that under the blasting of different types of explosives, the damage evolution law of the reservoir is different, and appropriate explosives should be selected in combination with rock stratum parameters in actual construction. Finally, the increase in permeability and the drainage effect of the reservoir after blasting are quantified by numerical simulations. It is demonstrated the average permeability increment of the reservoir under the action of TNT explosive is the largest, which is 3.08 (K = 4), while that under the action of emulsion explosive and ANFO explosive are 1.49 (K = 2) and 1.17 (K = 3) respectively; and the changes in reservoir permeability and drainage volume are coherent with the range of damage; the greater the range of damage, the greater the reservoir permeability and the greater the drainage efficiency.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/19475705.2022.2117653</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-5705
ispartof Geomatics, natural hazards and risk, 2022-12, Vol.13 (1), p.2356-2384
issn 1947-5705
1947-5713
language eng
recordid cdi_proquest_journals_2890236576
source Taylor & Francis
subjects 2,4,6-Trinitrotoluene
Blasting
Blasting (explosive)
blasting damage
Blasting-enhanced permeability
Coefficients
Damage
Decoupling
decoupling coefficients
Drainage
Drainage effects
Drainage measurement
Emulsions
Evolution
Explosions
Explosives
Feasibility studies
Mathematical models
Numerical simulations
Permeability
pressure rise time
reservoir drainage
Reservoirs
Shock waves
Simulation
title Numerical simulation of the effect of water-decoupling charge blasting on reservoir permeability enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20the%20effect%20of%20water-decoupling%20charge%20blasting%20on%20reservoir%20permeability%20enhancement&rft.jtitle=Geomatics,%20natural%20hazards%20and%20risk&rft.au=Wang,%20Wen&rft.date=2022-12-31&rft.volume=13&rft.issue=1&rft.spage=2356&rft.epage=2384&rft.pages=2356-2384&rft.issn=1947-5705&rft.eissn=1947-5713&rft_id=info:doi/10.1080/19475705.2022.2117653&rft_dat=%3Cproquest_doaj_%3E2890236576%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-2c23ba7f1cec3b2dc45da8e2cd10ff29affe06e4725165c45d763779918569583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890236576&rft_id=info:pmid/&rfr_iscdi=true