Loading…

Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property

Novel quinoidal bisthienoisatin (QBTI) derivatives end‐capped with phenyl and thienyl groups were designed and synthesized. Single‐crystal X‐ray structure analysis of phenyl group flanked QBTI molecule confirmed that the quinoidal structure contributed to the high planarity of the molecular skeleton...

Full description

Saved in:
Bibliographic Details
Published in:Nano select 2020-09, Vol.1 (3), p.334-345
Main Authors: Kohara, Akihiro, Hasegawa, Tsukasa, Ashizawa, Minoru, Hayashi, Yoshihiro, Kawauchi, Susumu, Masunaga, Hiroyasu, Ohta, Noboru, Matsumoto, Hidetoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3973-4643a8cf5ab686d140f4525b07864f02847c6aca04b4d547d65d22bb551ec4413
cites cdi_FETCH-LOGICAL-c3973-4643a8cf5ab686d140f4525b07864f02847c6aca04b4d547d65d22bb551ec4413
container_end_page 345
container_issue 3
container_start_page 334
container_title Nano select
container_volume 1
creator Kohara, Akihiro
Hasegawa, Tsukasa
Ashizawa, Minoru
Hayashi, Yoshihiro
Kawauchi, Susumu
Masunaga, Hiroyasu
Ohta, Noboru
Matsumoto, Hidetoshi
description Novel quinoidal bisthienoisatin (QBTI) derivatives end‐capped with phenyl and thienyl groups were designed and synthesized. Single‐crystal X‐ray structure analysis of phenyl group flanked QBTI molecule confirmed that the quinoidal structure contributed to the high planarity of the molecular skeleton and the construction of one‐dimensional stacks. The quinoidal form of bisthienoisatin derivatives displayed ambipolar carrier transport properties with mobilities of approximately 10−4 cm2 V−1 s−1. Different flanking aromatic rings considerably affected the thin‐film microstructure and hence the charge carrier transport properties of the material. The QBTI‐based narrow energy gap polymers were theoretically designed and synthesized. Delocalized quinoidal resonance of QBTI unit along the polymer backbone is of particular importance to achieve relatively high conductive state (10−3 S cm−1). We demonstrate that QBTI cores should be promising building blocks for constructing narrow energy gap semiconducting and conductive polymers. In the quest of new building block comprising organic semiconductors, quinoidal bisthienoisatin (QBTI) unit have been developed. QBTI‐based small molecules exhibited ambipolar carrier transport coming from narrow energy gap. It is noteworthy that QBTI based polymer composed with thienoisoindigo unit displayed relatively high conductive state (10−3 S cm−1) well associated with near‐infrared (NIR) light absorbing property.
doi_str_mv 10.1002/nano.202000053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890728487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890728487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3973-4643a8cf5ab686d140f4525b07864f02847c6aca04b4d547d65d22bb551ec4413</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxRdRsNRePQe8dmuSTXaz3krxC0qLqOeQTbI0tU3WJIusf70pFfXmXGYGfu89eFl2ieAMQYivrbBuhiGGaWhxko1wyVhOIEKnf-7zbBLCNiGYIlTVaJS9PfXGOqPEDjQmxI3R6QsiGgsaEbQCQe-NdFb1MjofbsDzYONGBxOmQG6EFzJqbz6TwNkpEFYBKbw32oPohQ2d8xF03nXax-EiO2vFLujJ9x5nr3e3L4uHfLm-f1zMl7ks6qrISUkKwWRLRVOyUiECW0IxbWDFStJCzEglSyEFJA1RlFSqpArjpqEUaUkIKsbZ1dE3Bb_3OkS-db23KZJjVsMqObAqUbMjJb0LweuWd97shR84gvzQKT90yn86TYL6KPgwOz38Q_PVfLX-1X4B2E58nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890728487</pqid></control><display><type>article</type><title>Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Kohara, Akihiro ; Hasegawa, Tsukasa ; Ashizawa, Minoru ; Hayashi, Yoshihiro ; Kawauchi, Susumu ; Masunaga, Hiroyasu ; Ohta, Noboru ; Matsumoto, Hidetoshi</creator><creatorcontrib>Kohara, Akihiro ; Hasegawa, Tsukasa ; Ashizawa, Minoru ; Hayashi, Yoshihiro ; Kawauchi, Susumu ; Masunaga, Hiroyasu ; Ohta, Noboru ; Matsumoto, Hidetoshi</creatorcontrib><description>Novel quinoidal bisthienoisatin (QBTI) derivatives end‐capped with phenyl and thienyl groups were designed and synthesized. Single‐crystal X‐ray structure analysis of phenyl group flanked QBTI molecule confirmed that the quinoidal structure contributed to the high planarity of the molecular skeleton and the construction of one‐dimensional stacks. The quinoidal form of bisthienoisatin derivatives displayed ambipolar carrier transport properties with mobilities of approximately 10−4 cm2 V−1 s−1. Different flanking aromatic rings considerably affected the thin‐film microstructure and hence the charge carrier transport properties of the material. The QBTI‐based narrow energy gap polymers were theoretically designed and synthesized. Delocalized quinoidal resonance of QBTI unit along the polymer backbone is of particular importance to achieve relatively high conductive state (10−3 S cm−1). We demonstrate that QBTI cores should be promising building blocks for constructing narrow energy gap semiconducting and conductive polymers. In the quest of new building block comprising organic semiconductors, quinoidal bisthienoisatin (QBTI) unit have been developed. QBTI‐based small molecules exhibited ambipolar carrier transport coming from narrow energy gap. It is noteworthy that QBTI based polymer composed with thienoisoindigo unit displayed relatively high conductive state (10−3 S cm−1) well associated with near‐infrared (NIR) light absorbing property.</description><identifier>ISSN: 2688-4011</identifier><identifier>EISSN: 2688-4011</identifier><identifier>DOI: 10.1002/nano.202000053</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Aromatic compounds ; Carrier transport ; Conducting polymers ; conductive state of polymer ; crystal structure ; Current carriers ; delocalized piflamework ; Design ; Energy ; Energy gap ; Molecular structure ; near‐infrared light absorbing property ; Oxidation ; Phase transitions ; Polymers ; quinoidal bisthienoisatin ; Semiconductors ; Single crystals ; Structural analysis ; Temperature ; Thin films ; Transport properties</subject><ispartof>Nano select, 2020-09, Vol.1 (3), p.334-345</ispartof><rights>2020 The Authors. published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3973-4643a8cf5ab686d140f4525b07864f02847c6aca04b4d547d65d22bb551ec4413</citedby><cites>FETCH-LOGICAL-c3973-4643a8cf5ab686d140f4525b07864f02847c6aca04b4d547d65d22bb551ec4413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnano.202000053$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890728487?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11561,25752,27923,27924,37011,44589,46051,46475</link.rule.ids></links><search><creatorcontrib>Kohara, Akihiro</creatorcontrib><creatorcontrib>Hasegawa, Tsukasa</creatorcontrib><creatorcontrib>Ashizawa, Minoru</creatorcontrib><creatorcontrib>Hayashi, Yoshihiro</creatorcontrib><creatorcontrib>Kawauchi, Susumu</creatorcontrib><creatorcontrib>Masunaga, Hiroyasu</creatorcontrib><creatorcontrib>Ohta, Noboru</creatorcontrib><creatorcontrib>Matsumoto, Hidetoshi</creatorcontrib><title>Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property</title><title>Nano select</title><description>Novel quinoidal bisthienoisatin (QBTI) derivatives end‐capped with phenyl and thienyl groups were designed and synthesized. Single‐crystal X‐ray structure analysis of phenyl group flanked QBTI molecule confirmed that the quinoidal structure contributed to the high planarity of the molecular skeleton and the construction of one‐dimensional stacks. The quinoidal form of bisthienoisatin derivatives displayed ambipolar carrier transport properties with mobilities of approximately 10−4 cm2 V−1 s−1. Different flanking aromatic rings considerably affected the thin‐film microstructure and hence the charge carrier transport properties of the material. The QBTI‐based narrow energy gap polymers were theoretically designed and synthesized. Delocalized quinoidal resonance of QBTI unit along the polymer backbone is of particular importance to achieve relatively high conductive state (10−3 S cm−1). We demonstrate that QBTI cores should be promising building blocks for constructing narrow energy gap semiconducting and conductive polymers. In the quest of new building block comprising organic semiconductors, quinoidal bisthienoisatin (QBTI) unit have been developed. QBTI‐based small molecules exhibited ambipolar carrier transport coming from narrow energy gap. It is noteworthy that QBTI based polymer composed with thienoisoindigo unit displayed relatively high conductive state (10−3 S cm−1) well associated with near‐infrared (NIR) light absorbing property.</description><subject>Aromatic compounds</subject><subject>Carrier transport</subject><subject>Conducting polymers</subject><subject>conductive state of polymer</subject><subject>crystal structure</subject><subject>Current carriers</subject><subject>delocalized piflamework</subject><subject>Design</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Molecular structure</subject><subject>near‐infrared light absorbing property</subject><subject>Oxidation</subject><subject>Phase transitions</subject><subject>Polymers</subject><subject>quinoidal bisthienoisatin</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Structural analysis</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Transport properties</subject><issn>2688-4011</issn><issn>2688-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNqFkM1LAzEQxRdRsNRePQe8dmuSTXaz3krxC0qLqOeQTbI0tU3WJIusf70pFfXmXGYGfu89eFl2ieAMQYivrbBuhiGGaWhxko1wyVhOIEKnf-7zbBLCNiGYIlTVaJS9PfXGOqPEDjQmxI3R6QsiGgsaEbQCQe-NdFb1MjofbsDzYONGBxOmQG6EFzJqbz6TwNkpEFYBKbw32oPohQ2d8xF03nXax-EiO2vFLujJ9x5nr3e3L4uHfLm-f1zMl7ks6qrISUkKwWRLRVOyUiECW0IxbWDFStJCzEglSyEFJA1RlFSqpArjpqEUaUkIKsbZ1dE3Bb_3OkS-db23KZJjVsMqObAqUbMjJb0LweuWd97shR84gvzQKT90yn86TYL6KPgwOz38Q_PVfLX-1X4B2E58nA</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Kohara, Akihiro</creator><creator>Hasegawa, Tsukasa</creator><creator>Ashizawa, Minoru</creator><creator>Hayashi, Yoshihiro</creator><creator>Kawauchi, Susumu</creator><creator>Masunaga, Hiroyasu</creator><creator>Ohta, Noboru</creator><creator>Matsumoto, Hidetoshi</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>202009</creationdate><title>Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property</title><author>Kohara, Akihiro ; Hasegawa, Tsukasa ; Ashizawa, Minoru ; Hayashi, Yoshihiro ; Kawauchi, Susumu ; Masunaga, Hiroyasu ; Ohta, Noboru ; Matsumoto, Hidetoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3973-4643a8cf5ab686d140f4525b07864f02847c6aca04b4d547d65d22bb551ec4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aromatic compounds</topic><topic>Carrier transport</topic><topic>Conducting polymers</topic><topic>conductive state of polymer</topic><topic>crystal structure</topic><topic>Current carriers</topic><topic>delocalized piflamework</topic><topic>Design</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Molecular structure</topic><topic>near‐infrared light absorbing property</topic><topic>Oxidation</topic><topic>Phase transitions</topic><topic>Polymers</topic><topic>quinoidal bisthienoisatin</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Structural analysis</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohara, Akihiro</creatorcontrib><creatorcontrib>Hasegawa, Tsukasa</creatorcontrib><creatorcontrib>Ashizawa, Minoru</creatorcontrib><creatorcontrib>Hayashi, Yoshihiro</creatorcontrib><creatorcontrib>Kawauchi, Susumu</creatorcontrib><creatorcontrib>Masunaga, Hiroyasu</creatorcontrib><creatorcontrib>Ohta, Noboru</creatorcontrib><creatorcontrib>Matsumoto, Hidetoshi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nano select</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohara, Akihiro</au><au>Hasegawa, Tsukasa</au><au>Ashizawa, Minoru</au><au>Hayashi, Yoshihiro</au><au>Kawauchi, Susumu</au><au>Masunaga, Hiroyasu</au><au>Ohta, Noboru</au><au>Matsumoto, Hidetoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property</atitle><jtitle>Nano select</jtitle><date>2020-09</date><risdate>2020</risdate><volume>1</volume><issue>3</issue><spage>334</spage><epage>345</epage><pages>334-345</pages><issn>2688-4011</issn><eissn>2688-4011</eissn><abstract>Novel quinoidal bisthienoisatin (QBTI) derivatives end‐capped with phenyl and thienyl groups were designed and synthesized. Single‐crystal X‐ray structure analysis of phenyl group flanked QBTI molecule confirmed that the quinoidal structure contributed to the high planarity of the molecular skeleton and the construction of one‐dimensional stacks. The quinoidal form of bisthienoisatin derivatives displayed ambipolar carrier transport properties with mobilities of approximately 10−4 cm2 V−1 s−1. Different flanking aromatic rings considerably affected the thin‐film microstructure and hence the charge carrier transport properties of the material. The QBTI‐based narrow energy gap polymers were theoretically designed and synthesized. Delocalized quinoidal resonance of QBTI unit along the polymer backbone is of particular importance to achieve relatively high conductive state (10−3 S cm−1). We demonstrate that QBTI cores should be promising building blocks for constructing narrow energy gap semiconducting and conductive polymers. In the quest of new building block comprising organic semiconductors, quinoidal bisthienoisatin (QBTI) unit have been developed. QBTI‐based small molecules exhibited ambipolar carrier transport coming from narrow energy gap. It is noteworthy that QBTI based polymer composed with thienoisoindigo unit displayed relatively high conductive state (10−3 S cm−1) well associated with near‐infrared (NIR) light absorbing property.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nano.202000053</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-4011
ispartof Nano select, 2020-09, Vol.1 (3), p.334-345
issn 2688-4011
2688-4011
language eng
recordid cdi_proquest_journals_2890728487
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Aromatic compounds
Carrier transport
Conducting polymers
conductive state of polymer
crystal structure
Current carriers
delocalized piflamework
Design
Energy
Energy gap
Molecular structure
near‐infrared light absorbing property
Oxidation
Phase transitions
Polymers
quinoidal bisthienoisatin
Semiconductors
Single crystals
Structural analysis
Temperature
Thin films
Transport properties
title Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quinoidal%20bisthienoisatin%20based%20semiconductors:%20Synthesis,%20characterization,%20and%20carrier%20transport%20property&rft.jtitle=Nano%20select&rft.au=Kohara,%20Akihiro&rft.date=2020-09&rft.volume=1&rft.issue=3&rft.spage=334&rft.epage=345&rft.pages=334-345&rft.issn=2688-4011&rft.eissn=2688-4011&rft_id=info:doi/10.1002/nano.202000053&rft_dat=%3Cproquest_cross%3E2890728487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3973-4643a8cf5ab686d140f4525b07864f02847c6aca04b4d547d65d22bb551ec4413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890728487&rft_id=info:pmid/&rfr_iscdi=true