Loading…

Predicting the forming limit diagram of the fine-grained AA 1050 sheet using GTN damage model with experimental verifications

In this research, forming limit diagram (FLD) of aluminum alloy 1050 (AA 1050) sheet produced by Accumulative Roll Bonding (ARB) is investigated numerically and experimentally. The Gurson-Tvergaard-Needleman (GTN) ductile damage model is used to predict sheet failure and obtain its FLD using numeric...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2023-12, Vol.237 (14), p.2325-2335
Main Authors: Barfeh, Ashkan, Hashemi, Ramin, Safdarian, Rasoul, Rahmatabadi, Davood, Aminzadeh, Ahmad, Sattarpanah Karganroudi, Sasan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-3c6bd1cb60c8fd42696fa57d1656e140f240575c960e2ab41138f6c17e29abfe3
cites cdi_FETCH-LOGICAL-c318t-3c6bd1cb60c8fd42696fa57d1656e140f240575c960e2ab41138f6c17e29abfe3
container_end_page 2335
container_issue 14
container_start_page 2325
container_title Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture
container_volume 237
creator Barfeh, Ashkan
Hashemi, Ramin
Safdarian, Rasoul
Rahmatabadi, Davood
Aminzadeh, Ahmad
Sattarpanah Karganroudi, Sasan
description In this research, forming limit diagram (FLD) of aluminum alloy 1050 (AA 1050) sheet produced by Accumulative Roll Bonding (ARB) is investigated numerically and experimentally. The Gurson-Tvergaard-Needleman (GTN) ductile damage model is used to predict sheet failure and obtain its FLD using numerical simulation in Abaqus/Explicit. Nucleation and growth of voids in the material during the deformation is the basic concept of the GTN damage model. This damage model has nine basic parameters that obtaining through experimental tests is time-consuming and costly, and in some cases, impossible. Thus, the present study tries to obtain the above parameters for fine-grained aluminum 1050 fabricated by ARB using the finite element method. Therefore, after considering each parameter’s interval, numerical simulation and the anti-inference method are used in the uniaxial tensile test to identify GTN parameters for the AA 1050 sheet using FEM. The optimum parameters of the GTN model are used in the FEM of the Nakazima test for FLD prediction. Also, The FLD of the fine-grained aluminum sheet is obtained experimentally using the Nakazima test. Finally, the numerical and experimental FLDs are compared for validation.
doi_str_mv 10.1177/09544054221138900
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890744704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544054221138900</sage_id><sourcerecordid>2890744704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-3c6bd1cb60c8fd42696fa57d1656e140f240575c960e2ab41138f6c17e29abfe3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPEOcV2HLs5VhUvqQIO5Rw59rp1lUexXR4H_h1HQeKA2MuudmdmdwehS0pmlEp5TcqCc1JwxijN5yUhR2jCCKcZK2VxjCbDPBsAp-gshB1JIfN8gr6ePRino-s2OG4B2963Q9241kVsnNp41eLejkPXQZYaKRm8WGBKCoLDFiDiQxhYd-tHbFSrNoDb3kCD313cYvjYg3ctdFE1-C2V1mkVXd-Fc3RiVRPg4idP0cvtzXp5n62e7h6Wi1WmczqPWa5FbaiuBdFzazgTpbCqkIaKQgDlxLL0mSx0KQgwVfPBAis0lcBKVVvIp-hq1N37_vUAIVa7_uC7tLJiySzJuSQ8oeiI0r4PwYOt9uls5T8rSqrB5eqPy4kzGzkhPf2r-j_hG5xVfEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890744704</pqid></control><display><type>article</type><title>Predicting the forming limit diagram of the fine-grained AA 1050 sheet using GTN damage model with experimental verifications</title><source>SAGE IMechE Complete Collection</source><source>Sage Journals Online</source><creator>Barfeh, Ashkan ; Hashemi, Ramin ; Safdarian, Rasoul ; Rahmatabadi, Davood ; Aminzadeh, Ahmad ; Sattarpanah Karganroudi, Sasan</creator><creatorcontrib>Barfeh, Ashkan ; Hashemi, Ramin ; Safdarian, Rasoul ; Rahmatabadi, Davood ; Aminzadeh, Ahmad ; Sattarpanah Karganroudi, Sasan</creatorcontrib><description>In this research, forming limit diagram (FLD) of aluminum alloy 1050 (AA 1050) sheet produced by Accumulative Roll Bonding (ARB) is investigated numerically and experimentally. The Gurson-Tvergaard-Needleman (GTN) ductile damage model is used to predict sheet failure and obtain its FLD using numerical simulation in Abaqus/Explicit. Nucleation and growth of voids in the material during the deformation is the basic concept of the GTN damage model. This damage model has nine basic parameters that obtaining through experimental tests is time-consuming and costly, and in some cases, impossible. Thus, the present study tries to obtain the above parameters for fine-grained aluminum 1050 fabricated by ARB using the finite element method. Therefore, after considering each parameter’s interval, numerical simulation and the anti-inference method are used in the uniaxial tensile test to identify GTN parameters for the AA 1050 sheet using FEM. The optimum parameters of the GTN model are used in the FEM of the Nakazima test for FLD prediction. Also, The FLD of the fine-grained aluminum sheet is obtained experimentally using the Nakazima test. Finally, the numerical and experimental FLDs are compared for validation.</description><identifier>ISSN: 0954-4054</identifier><identifier>EISSN: 2041-2975</identifier><identifier>DOI: 10.1177/09544054221138900</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum ; Aluminum base alloys ; Computer simulation ; Damage assessment ; Ductile fracture ; Finite element method ; Forming limit diagrams ; Mathematical models ; Metal sheets ; Nucleation ; Parameter identification ; Roll bonding ; Tensile tests</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2023-12, Vol.237 (14), p.2325-2335</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-3c6bd1cb60c8fd42696fa57d1656e140f240575c960e2ab41138f6c17e29abfe3</citedby><cites>FETCH-LOGICAL-c318t-3c6bd1cb60c8fd42696fa57d1656e140f240575c960e2ab41138f6c17e29abfe3</cites><orcidid>0000-0002-8312-8303 ; 0000-0001-7226-5671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544054221138900$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544054221138900$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79364</link.rule.ids></links><search><creatorcontrib>Barfeh, Ashkan</creatorcontrib><creatorcontrib>Hashemi, Ramin</creatorcontrib><creatorcontrib>Safdarian, Rasoul</creatorcontrib><creatorcontrib>Rahmatabadi, Davood</creatorcontrib><creatorcontrib>Aminzadeh, Ahmad</creatorcontrib><creatorcontrib>Sattarpanah Karganroudi, Sasan</creatorcontrib><title>Predicting the forming limit diagram of the fine-grained AA 1050 sheet using GTN damage model with experimental verifications</title><title>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</title><description>In this research, forming limit diagram (FLD) of aluminum alloy 1050 (AA 1050) sheet produced by Accumulative Roll Bonding (ARB) is investigated numerically and experimentally. The Gurson-Tvergaard-Needleman (GTN) ductile damage model is used to predict sheet failure and obtain its FLD using numerical simulation in Abaqus/Explicit. Nucleation and growth of voids in the material during the deformation is the basic concept of the GTN damage model. This damage model has nine basic parameters that obtaining through experimental tests is time-consuming and costly, and in some cases, impossible. Thus, the present study tries to obtain the above parameters for fine-grained aluminum 1050 fabricated by ARB using the finite element method. Therefore, after considering each parameter’s interval, numerical simulation and the anti-inference method are used in the uniaxial tensile test to identify GTN parameters for the AA 1050 sheet using FEM. The optimum parameters of the GTN model are used in the FEM of the Nakazima test for FLD prediction. Also, The FLD of the fine-grained aluminum sheet is obtained experimentally using the Nakazima test. Finally, the numerical and experimental FLDs are compared for validation.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Computer simulation</subject><subject>Damage assessment</subject><subject>Ductile fracture</subject><subject>Finite element method</subject><subject>Forming limit diagrams</subject><subject>Mathematical models</subject><subject>Metal sheets</subject><subject>Nucleation</subject><subject>Parameter identification</subject><subject>Roll bonding</subject><subject>Tensile tests</subject><issn>0954-4054</issn><issn>2041-2975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcLPEOcV2HLs5VhUvqQIO5Rw59rp1lUexXR4H_h1HQeKA2MuudmdmdwehS0pmlEp5TcqCc1JwxijN5yUhR2jCCKcZK2VxjCbDPBsAp-gshB1JIfN8gr6ePRino-s2OG4B2963Q9241kVsnNp41eLejkPXQZYaKRm8WGBKCoLDFiDiQxhYd-tHbFSrNoDb3kCD313cYvjYg3ctdFE1-C2V1mkVXd-Fc3RiVRPg4idP0cvtzXp5n62e7h6Wi1WmczqPWa5FbaiuBdFzazgTpbCqkIaKQgDlxLL0mSx0KQgwVfPBAis0lcBKVVvIp-hq1N37_vUAIVa7_uC7tLJiySzJuSQ8oeiI0r4PwYOt9uls5T8rSqrB5eqPy4kzGzkhPf2r-j_hG5xVfEE</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Barfeh, Ashkan</creator><creator>Hashemi, Ramin</creator><creator>Safdarian, Rasoul</creator><creator>Rahmatabadi, Davood</creator><creator>Aminzadeh, Ahmad</creator><creator>Sattarpanah Karganroudi, Sasan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-8312-8303</orcidid><orcidid>https://orcid.org/0000-0001-7226-5671</orcidid></search><sort><creationdate>202312</creationdate><title>Predicting the forming limit diagram of the fine-grained AA 1050 sheet using GTN damage model with experimental verifications</title><author>Barfeh, Ashkan ; Hashemi, Ramin ; Safdarian, Rasoul ; Rahmatabadi, Davood ; Aminzadeh, Ahmad ; Sattarpanah Karganroudi, Sasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-3c6bd1cb60c8fd42696fa57d1656e140f240575c960e2ab41138f6c17e29abfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Computer simulation</topic><topic>Damage assessment</topic><topic>Ductile fracture</topic><topic>Finite element method</topic><topic>Forming limit diagrams</topic><topic>Mathematical models</topic><topic>Metal sheets</topic><topic>Nucleation</topic><topic>Parameter identification</topic><topic>Roll bonding</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barfeh, Ashkan</creatorcontrib><creatorcontrib>Hashemi, Ramin</creatorcontrib><creatorcontrib>Safdarian, Rasoul</creatorcontrib><creatorcontrib>Rahmatabadi, Davood</creatorcontrib><creatorcontrib>Aminzadeh, Ahmad</creatorcontrib><creatorcontrib>Sattarpanah Karganroudi, Sasan</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barfeh, Ashkan</au><au>Hashemi, Ramin</au><au>Safdarian, Rasoul</au><au>Rahmatabadi, Davood</au><au>Aminzadeh, Ahmad</au><au>Sattarpanah Karganroudi, Sasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the forming limit diagram of the fine-grained AA 1050 sheet using GTN damage model with experimental verifications</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle><date>2023-12</date><risdate>2023</risdate><volume>237</volume><issue>14</issue><spage>2325</spage><epage>2335</epage><pages>2325-2335</pages><issn>0954-4054</issn><eissn>2041-2975</eissn><abstract>In this research, forming limit diagram (FLD) of aluminum alloy 1050 (AA 1050) sheet produced by Accumulative Roll Bonding (ARB) is investigated numerically and experimentally. The Gurson-Tvergaard-Needleman (GTN) ductile damage model is used to predict sheet failure and obtain its FLD using numerical simulation in Abaqus/Explicit. Nucleation and growth of voids in the material during the deformation is the basic concept of the GTN damage model. This damage model has nine basic parameters that obtaining through experimental tests is time-consuming and costly, and in some cases, impossible. Thus, the present study tries to obtain the above parameters for fine-grained aluminum 1050 fabricated by ARB using the finite element method. Therefore, after considering each parameter’s interval, numerical simulation and the anti-inference method are used in the uniaxial tensile test to identify GTN parameters for the AA 1050 sheet using FEM. The optimum parameters of the GTN model are used in the FEM of the Nakazima test for FLD prediction. Also, The FLD of the fine-grained aluminum sheet is obtained experimentally using the Nakazima test. Finally, the numerical and experimental FLDs are compared for validation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544054221138900</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8312-8303</orcidid><orcidid>https://orcid.org/0000-0001-7226-5671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-4054
ispartof Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2023-12, Vol.237 (14), p.2325-2335
issn 0954-4054
2041-2975
language eng
recordid cdi_proquest_journals_2890744704
source SAGE IMechE Complete Collection; Sage Journals Online
subjects Aluminum
Aluminum base alloys
Computer simulation
Damage assessment
Ductile fracture
Finite element method
Forming limit diagrams
Mathematical models
Metal sheets
Nucleation
Parameter identification
Roll bonding
Tensile tests
title Predicting the forming limit diagram of the fine-grained AA 1050 sheet using GTN damage model with experimental verifications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20forming%20limit%20diagram%20of%20the%20fine-grained%20AA%201050%20sheet%20using%20GTN%20damage%20model%20with%20experimental%20verifications&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20B,%20Journal%20of%20engineering%20manufacture&rft.au=Barfeh,%20Ashkan&rft.date=2023-12&rft.volume=237&rft.issue=14&rft.spage=2325&rft.epage=2335&rft.pages=2325-2335&rft.issn=0954-4054&rft.eissn=2041-2975&rft_id=info:doi/10.1177/09544054221138900&rft_dat=%3Cproquest_cross%3E2890744704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-3c6bd1cb60c8fd42696fa57d1656e140f240575c960e2ab41138f6c17e29abfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890744704&rft_id=info:pmid/&rft_sage_id=10.1177_09544054221138900&rfr_iscdi=true