Loading…

Topological aspects of brane fields: solitons and higher-form symmetries

In this note, we classify topological solitons of \(n\)-brane fields, which are nonlocal fields that describe \(n\)-dimensional extended objects. We consider a class of \(n\)-brane fields that formally define a homomorphism from the \(n\)-fold loop space \(\Omega^n X_D\) of spacetime \(X_D\) to a sp...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Authors: Pace, Salvatore D, Yu Leon Liu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pace, Salvatore D
Yu Leon Liu
description In this note, we classify topological solitons of \(n\)-brane fields, which are nonlocal fields that describe \(n\)-dimensional extended objects. We consider a class of \(n\)-brane fields that formally define a homomorphism from the \(n\)-fold loop space \(\Omega^n X_D\) of spacetime \(X_D\) to a space \(\mathcal{E}_n\). Examples of such \(n\)-brane fields are Wilson operators in \(n\)-form gauge theories. The solitons are singularities of the \(n\)-brane field, and we classify them using the homotopy theory of \({\mathbb{E}_n}\)-algebras. We find that the classification of codimension \({k+1}\) topological solitons with \({k\geq n}\) can be understood using homotopy groups of \(\mathcal{E}_n\). In particular, they are classified by \({\pi_{k-n}(\mathcal{E}_n)}\) when \({n>1}\) and by \({\pi_{k-n}(\mathcal{E}_n)}\) modulo a \({\pi_{1-n}(\mathcal{E}_n)}\) action when \({n=0}\) or \({1}\). However, for \({n>2}\), their classification goes beyond the homotopy groups of \(\mathcal{E}_n\) when \({k< n}\), which we explore through examples. We compare this classification to \(n\)-form \(\mathcal{E}_n\) gauge theory. We then apply this classification and consider an \({n}\)-form symmetry described by the abelian group \({G^{(n)}}\) that is spontaneously broken to \({H^{(n)}\subset G^{(n)}}\), for which the order parameter characterizing this symmetry breaking pattern is an \({n}\)-brane field with target space \({\mathcal{E}_n = G^{(n)}/H^{(n)}}\). We discuss this classification in the context of many examples, both with and without 't Hooft anomalies.
doi_str_mv 10.48550/arxiv.2311.09293
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2891063804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891063804</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-a96dd51b1abb8041a481ea1339ed44d0425302da8a6c27a309c78a75bc1766fd3</originalsourceid><addsrcrecordid>eNotjUFLwzAYQIMgOOZ-gLeA59YkX5Im3mSoGwy89D6-NumW0TY16UT_vQW9vHd7j5AHzkpplGJPmL7DVymA85JZYeGGrAQAL4wU4o5scr4wxoSuhFKwIrs6TrGPp9BiTzFPvp0zjR1tEo6edsH3Lj_THPswxzFTHB09h9PZp6KLaaD5Zxj8nILP9-S2wz77zb_XpH57rbe74vDxvt--HAq0ChZo5xRvODaNYZKjNNwjB7DeSemYFAqYcGhQt6JCYLatDFaqaXmldedgTR7_slOKn1ef5-MlXtO4HI_CWM40LFn4BWwkTeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891063804</pqid></control><display><type>article</type><title>Topological aspects of brane fields: solitons and higher-form symmetries</title><source>Publicly Available Content Database</source><creator>Pace, Salvatore D ; Yu Leon Liu</creator><creatorcontrib>Pace, Salvatore D ; Yu Leon Liu</creatorcontrib><description>In this note, we classify topological solitons of \(n\)-brane fields, which are nonlocal fields that describe \(n\)-dimensional extended objects. We consider a class of \(n\)-brane fields that formally define a homomorphism from the \(n\)-fold loop space \(\Omega^n X_D\) of spacetime \(X_D\) to a space \(\mathcal{E}_n\). Examples of such \(n\)-brane fields are Wilson operators in \(n\)-form gauge theories. The solitons are singularities of the \(n\)-brane field, and we classify them using the homotopy theory of \({\mathbb{E}_n}\)-algebras. We find that the classification of codimension \({k+1}\) topological solitons with \({k\geq n}\) can be understood using homotopy groups of \(\mathcal{E}_n\). In particular, they are classified by \({\pi_{k-n}(\mathcal{E}_n)}\) when \({n&gt;1}\) and by \({\pi_{k-n}(\mathcal{E}_n)}\) modulo a \({\pi_{1-n}(\mathcal{E}_n)}\) action when \({n=0}\) or \({1}\). However, for \({n&gt;2}\), their classification goes beyond the homotopy groups of \(\mathcal{E}_n\) when \({k&lt; n}\), which we explore through examples. We compare this classification to \(n\)-form \(\mathcal{E}_n\) gauge theory. We then apply this classification and consider an \({n}\)-form symmetry described by the abelian group \({G^{(n)}}\) that is spontaneously broken to \({H^{(n)}\subset G^{(n)}}\), for which the order parameter characterizing this symmetry breaking pattern is an \({n}\)-brane field with target space \({\mathcal{E}_n = G^{(n)}/H^{(n)}}\). We discuss this classification in the context of many examples, both with and without 't Hooft anomalies.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2311.09293</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Branes ; Broken symmetry ; Classification ; Gauge theory ; Group theory ; Homomorphisms ; Homotopy theory ; Order parameters ; Solitary waves ; Topology</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2891063804?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Pace, Salvatore D</creatorcontrib><creatorcontrib>Yu Leon Liu</creatorcontrib><title>Topological aspects of brane fields: solitons and higher-form symmetries</title><title>arXiv.org</title><description>In this note, we classify topological solitons of \(n\)-brane fields, which are nonlocal fields that describe \(n\)-dimensional extended objects. We consider a class of \(n\)-brane fields that formally define a homomorphism from the \(n\)-fold loop space \(\Omega^n X_D\) of spacetime \(X_D\) to a space \(\mathcal{E}_n\). Examples of such \(n\)-brane fields are Wilson operators in \(n\)-form gauge theories. The solitons are singularities of the \(n\)-brane field, and we classify them using the homotopy theory of \({\mathbb{E}_n}\)-algebras. We find that the classification of codimension \({k+1}\) topological solitons with \({k\geq n}\) can be understood using homotopy groups of \(\mathcal{E}_n\). In particular, they are classified by \({\pi_{k-n}(\mathcal{E}_n)}\) when \({n&gt;1}\) and by \({\pi_{k-n}(\mathcal{E}_n)}\) modulo a \({\pi_{1-n}(\mathcal{E}_n)}\) action when \({n=0}\) or \({1}\). However, for \({n&gt;2}\), their classification goes beyond the homotopy groups of \(\mathcal{E}_n\) when \({k&lt; n}\), which we explore through examples. We compare this classification to \(n\)-form \(\mathcal{E}_n\) gauge theory. We then apply this classification and consider an \({n}\)-form symmetry described by the abelian group \({G^{(n)}}\) that is spontaneously broken to \({H^{(n)}\subset G^{(n)}}\), for which the order parameter characterizing this symmetry breaking pattern is an \({n}\)-brane field with target space \({\mathcal{E}_n = G^{(n)}/H^{(n)}}\). We discuss this classification in the context of many examples, both with and without 't Hooft anomalies.</description><subject>Anomalies</subject><subject>Branes</subject><subject>Broken symmetry</subject><subject>Classification</subject><subject>Gauge theory</subject><subject>Group theory</subject><subject>Homomorphisms</subject><subject>Homotopy theory</subject><subject>Order parameters</subject><subject>Solitary waves</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUFLwzAYQIMgOOZ-gLeA59YkX5Im3mSoGwy89D6-NumW0TY16UT_vQW9vHd7j5AHzkpplGJPmL7DVymA85JZYeGGrAQAL4wU4o5scr4wxoSuhFKwIrs6TrGPp9BiTzFPvp0zjR1tEo6edsH3Lj_THPswxzFTHB09h9PZp6KLaaD5Zxj8nILP9-S2wz77zb_XpH57rbe74vDxvt--HAq0ChZo5xRvODaNYZKjNNwjB7DeSemYFAqYcGhQt6JCYLatDFaqaXmldedgTR7_slOKn1ef5-MlXtO4HI_CWM40LFn4BWwkTeE</recordid><startdate>20240107</startdate><enddate>20240107</enddate><creator>Pace, Salvatore D</creator><creator>Yu Leon Liu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240107</creationdate><title>Topological aspects of brane fields: solitons and higher-form symmetries</title><author>Pace, Salvatore D ; Yu Leon Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-a96dd51b1abb8041a481ea1339ed44d0425302da8a6c27a309c78a75bc1766fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Branes</topic><topic>Broken symmetry</topic><topic>Classification</topic><topic>Gauge theory</topic><topic>Group theory</topic><topic>Homomorphisms</topic><topic>Homotopy theory</topic><topic>Order parameters</topic><topic>Solitary waves</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Pace, Salvatore D</creatorcontrib><creatorcontrib>Yu Leon Liu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pace, Salvatore D</au><au>Yu Leon Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological aspects of brane fields: solitons and higher-form symmetries</atitle><jtitle>arXiv.org</jtitle><date>2024-01-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this note, we classify topological solitons of \(n\)-brane fields, which are nonlocal fields that describe \(n\)-dimensional extended objects. We consider a class of \(n\)-brane fields that formally define a homomorphism from the \(n\)-fold loop space \(\Omega^n X_D\) of spacetime \(X_D\) to a space \(\mathcal{E}_n\). Examples of such \(n\)-brane fields are Wilson operators in \(n\)-form gauge theories. The solitons are singularities of the \(n\)-brane field, and we classify them using the homotopy theory of \({\mathbb{E}_n}\)-algebras. We find that the classification of codimension \({k+1}\) topological solitons with \({k\geq n}\) can be understood using homotopy groups of \(\mathcal{E}_n\). In particular, they are classified by \({\pi_{k-n}(\mathcal{E}_n)}\) when \({n&gt;1}\) and by \({\pi_{k-n}(\mathcal{E}_n)}\) modulo a \({\pi_{1-n}(\mathcal{E}_n)}\) action when \({n=0}\) or \({1}\). However, for \({n&gt;2}\), their classification goes beyond the homotopy groups of \(\mathcal{E}_n\) when \({k&lt; n}\), which we explore through examples. We compare this classification to \(n\)-form \(\mathcal{E}_n\) gauge theory. We then apply this classification and consider an \({n}\)-form symmetry described by the abelian group \({G^{(n)}}\) that is spontaneously broken to \({H^{(n)}\subset G^{(n)}}\), for which the order parameter characterizing this symmetry breaking pattern is an \({n}\)-brane field with target space \({\mathcal{E}_n = G^{(n)}/H^{(n)}}\). We discuss this classification in the context of many examples, both with and without 't Hooft anomalies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2311.09293</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2891063804
source Publicly Available Content Database
subjects Anomalies
Branes
Broken symmetry
Classification
Gauge theory
Group theory
Homomorphisms
Homotopy theory
Order parameters
Solitary waves
Topology
title Topological aspects of brane fields: solitons and higher-form symmetries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20aspects%20of%20brane%20fields:%20solitons%20and%20higher-form%20symmetries&rft.jtitle=arXiv.org&rft.au=Pace,%20Salvatore%20D&rft.date=2024-01-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2311.09293&rft_dat=%3Cproquest%3E2891063804%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-a96dd51b1abb8041a481ea1339ed44d0425302da8a6c27a309c78a75bc1766fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891063804&rft_id=info:pmid/&rfr_iscdi=true