Loading…

IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks

Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2023-11, Vol.2023 (1)
Main Authors: Nazari, Amin, Sohrabi, Sakine, Mohammadi, Reza, Nassiri, Mohammad, Mansoorizadeh, Muharram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33
cites cdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33
container_end_page
container_issue 1
container_start_page
container_title Journal of sensors
container_volume 2023
creator Nazari, Amin
Sohrabi, Sakine
Mohammadi, Reza
Nassiri, Mohammad
Mansoorizadeh, Muharram
description Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup.
doi_str_mv 10.1155/2023/2644846
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2891543688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891543688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8QMsMUKov5I4bFXVQqQCA0FisxznmroNTrFTVf33pGrFyHTv8OjuvQehW0oeKY3jESOMj1gihBTJGRrQRKZRyhJ5_pfjr0t0FcKKkISnnA_Qaz4t8tkTzl0HTWNrcB2eOvD1PhrvtAdc6LDGH2YJ1baxrsYFmKWzP1vA1uG8LUaztsZv0O1avw7X6GKhmwA3pzlEn7NpMXmJ5u_P-WQ8j4wgooukZiCyMk6Am6yqgBHNBI9lpkVFQGtacl4SSCugoswAUk5KrpmB_jeTLTgforvj3o1v-yqhU6t2611_UjGZ0VjwRMqeejhSxrcheFiojbff2u8VJeogTB2EqZOwHr8_4kvrKr2z_9O_hv9pdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891543688</pqid></control><display><type>article</type><title>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Nazari, Amin ; Sohrabi, Sakine ; Mohammadi, Reza ; Nassiri, Mohammad ; Mansoorizadeh, Muharram</creator><contributor>Chu, Lei</contributor><creatorcontrib>Nazari, Amin ; Sohrabi, Sakine ; Mohammadi, Reza ; Nassiri, Mohammad ; Mansoorizadeh, Muharram ; Chu, Lei</creatorcontrib><description>Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2023/2644846</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Cloud computing ; Cost reduction ; Edge computing ; Energy consumption ; Energy efficiency ; Energy management ; Genetic algorithms ; Internet of Things ; Optimization ; Real time ; Response time ; Response time (computers) ; Scheduling ; Simulated annealing ; Simulation ; Task scheduling ; Workloads</subject><ispartof>Journal of sensors, 2023-11, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Amin Nazari et al.</rights><rights>Copyright © 2023 Amin Nazari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</citedby><cites>FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</cites><orcidid>0000-0002-2139-4518 ; 0000-0002-7131-1047 ; 0000-0003-0455-0141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2891543688/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2891543688?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Chu, Lei</contributor><creatorcontrib>Nazari, Amin</creatorcontrib><creatorcontrib>Sohrabi, Sakine</creatorcontrib><creatorcontrib>Mohammadi, Reza</creatorcontrib><creatorcontrib>Nassiri, Mohammad</creatorcontrib><creatorcontrib>Mansoorizadeh, Muharram</creatorcontrib><title>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</title><title>Journal of sensors</title><description>Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Cost reduction</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Genetic algorithms</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Real time</subject><subject>Response time</subject><subject>Response time (computers)</subject><subject>Scheduling</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Task scheduling</subject><subject>Workloads</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kD1PwzAQhi0EEqWw8QMsMUKov5I4bFXVQqQCA0FisxznmroNTrFTVf33pGrFyHTv8OjuvQehW0oeKY3jESOMj1gihBTJGRrQRKZRyhJ5_pfjr0t0FcKKkISnnA_Qaz4t8tkTzl0HTWNrcB2eOvD1PhrvtAdc6LDGH2YJ1baxrsYFmKWzP1vA1uG8LUaztsZv0O1avw7X6GKhmwA3pzlEn7NpMXmJ5u_P-WQ8j4wgooukZiCyMk6Am6yqgBHNBI9lpkVFQGtacl4SSCugoswAUk5KrpmB_jeTLTgforvj3o1v-yqhU6t2611_UjGZ0VjwRMqeejhSxrcheFiojbff2u8VJeogTB2EqZOwHr8_4kvrKr2z_9O_hv9pdw</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Nazari, Amin</creator><creator>Sohrabi, Sakine</creator><creator>Mohammadi, Reza</creator><creator>Nassiri, Mohammad</creator><creator>Mansoorizadeh, Muharram</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2139-4518</orcidid><orcidid>https://orcid.org/0000-0002-7131-1047</orcidid><orcidid>https://orcid.org/0000-0003-0455-0141</orcidid></search><sort><creationdate>20231110</creationdate><title>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</title><author>Nazari, Amin ; Sohrabi, Sakine ; Mohammadi, Reza ; Nassiri, Mohammad ; Mansoorizadeh, Muharram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Cost reduction</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Genetic algorithms</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Real time</topic><topic>Response time</topic><topic>Response time (computers)</topic><topic>Scheduling</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Task scheduling</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazari, Amin</creatorcontrib><creatorcontrib>Sohrabi, Sakine</creatorcontrib><creatorcontrib>Mohammadi, Reza</creatorcontrib><creatorcontrib>Nassiri, Mohammad</creatorcontrib><creatorcontrib>Mansoorizadeh, Muharram</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazari, Amin</au><au>Sohrabi, Sakine</au><au>Mohammadi, Reza</au><au>Nassiri, Mohammad</au><au>Mansoorizadeh, Muharram</au><au>Chu, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</atitle><jtitle>Journal of sensors</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/2644846</doi><orcidid>https://orcid.org/0000-0002-2139-4518</orcidid><orcidid>https://orcid.org/0000-0002-7131-1047</orcidid><orcidid>https://orcid.org/0000-0003-0455-0141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2023-11, Vol.2023 (1)
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2891543688
source Publicly Available Content Database; Wiley Open Access
subjects Algorithms
Cloud computing
Cost reduction
Edge computing
Energy consumption
Energy efficiency
Energy management
Genetic algorithms
Internet of Things
Optimization
Real time
Response time
Response time (computers)
Scheduling
Simulated annealing
Simulation
Task scheduling
Workloads
title IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IETIF:%20Intelligent%20Energy-Aware%20Task%20Scheduling%20Technique%20in%20IoT/Fog%20Networks&rft.jtitle=Journal%20of%20sensors&rft.au=Nazari,%20Amin&rft.date=2023-11-10&rft.volume=2023&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2023/2644846&rft_dat=%3Cproquest_cross%3E2891543688%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891543688&rft_id=info:pmid/&rfr_iscdi=true