Loading…
IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks
Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases...
Saved in:
Published in: | Journal of sensors 2023-11, Vol.2023 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of sensors |
container_volume | 2023 |
creator | Nazari, Amin Sohrabi, Sakine Mohammadi, Reza Nassiri, Mohammad Mansoorizadeh, Muharram |
description | Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup. |
doi_str_mv | 10.1155/2023/2644846 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2891543688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891543688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8QMsMUKov5I4bFXVQqQCA0FisxznmroNTrFTVf33pGrFyHTv8OjuvQehW0oeKY3jESOMj1gihBTJGRrQRKZRyhJ5_pfjr0t0FcKKkISnnA_Qaz4t8tkTzl0HTWNrcB2eOvD1PhrvtAdc6LDGH2YJ1baxrsYFmKWzP1vA1uG8LUaztsZv0O1avw7X6GKhmwA3pzlEn7NpMXmJ5u_P-WQ8j4wgooukZiCyMk6Am6yqgBHNBI9lpkVFQGtacl4SSCugoswAUk5KrpmB_jeTLTgforvj3o1v-yqhU6t2611_UjGZ0VjwRMqeejhSxrcheFiojbff2u8VJeogTB2EqZOwHr8_4kvrKr2z_9O_hv9pdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891543688</pqid></control><display><type>article</type><title>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Nazari, Amin ; Sohrabi, Sakine ; Mohammadi, Reza ; Nassiri, Mohammad ; Mansoorizadeh, Muharram</creator><contributor>Chu, Lei</contributor><creatorcontrib>Nazari, Amin ; Sohrabi, Sakine ; Mohammadi, Reza ; Nassiri, Mohammad ; Mansoorizadeh, Muharram ; Chu, Lei</creatorcontrib><description>Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2023/2644846</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Cloud computing ; Cost reduction ; Edge computing ; Energy consumption ; Energy efficiency ; Energy management ; Genetic algorithms ; Internet of Things ; Optimization ; Real time ; Response time ; Response time (computers) ; Scheduling ; Simulated annealing ; Simulation ; Task scheduling ; Workloads</subject><ispartof>Journal of sensors, 2023-11, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Amin Nazari et al.</rights><rights>Copyright © 2023 Amin Nazari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</citedby><cites>FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</cites><orcidid>0000-0002-2139-4518 ; 0000-0002-7131-1047 ; 0000-0003-0455-0141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2891543688/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2891543688?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Chu, Lei</contributor><creatorcontrib>Nazari, Amin</creatorcontrib><creatorcontrib>Sohrabi, Sakine</creatorcontrib><creatorcontrib>Mohammadi, Reza</creatorcontrib><creatorcontrib>Nassiri, Mohammad</creatorcontrib><creatorcontrib>Mansoorizadeh, Muharram</creatorcontrib><title>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</title><title>Journal of sensors</title><description>Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Cost reduction</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Genetic algorithms</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Real time</subject><subject>Response time</subject><subject>Response time (computers)</subject><subject>Scheduling</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Task scheduling</subject><subject>Workloads</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kD1PwzAQhi0EEqWw8QMsMUKov5I4bFXVQqQCA0FisxznmroNTrFTVf33pGrFyHTv8OjuvQehW0oeKY3jESOMj1gihBTJGRrQRKZRyhJ5_pfjr0t0FcKKkISnnA_Qaz4t8tkTzl0HTWNrcB2eOvD1PhrvtAdc6LDGH2YJ1baxrsYFmKWzP1vA1uG8LUaztsZv0O1avw7X6GKhmwA3pzlEn7NpMXmJ5u_P-WQ8j4wgooukZiCyMk6Am6yqgBHNBI9lpkVFQGtacl4SSCugoswAUk5KrpmB_jeTLTgforvj3o1v-yqhU6t2611_UjGZ0VjwRMqeejhSxrcheFiojbff2u8VJeogTB2EqZOwHr8_4kvrKr2z_9O_hv9pdw</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Nazari, Amin</creator><creator>Sohrabi, Sakine</creator><creator>Mohammadi, Reza</creator><creator>Nassiri, Mohammad</creator><creator>Mansoorizadeh, Muharram</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2139-4518</orcidid><orcidid>https://orcid.org/0000-0002-7131-1047</orcidid><orcidid>https://orcid.org/0000-0003-0455-0141</orcidid></search><sort><creationdate>20231110</creationdate><title>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</title><author>Nazari, Amin ; Sohrabi, Sakine ; Mohammadi, Reza ; Nassiri, Mohammad ; Mansoorizadeh, Muharram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Cost reduction</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Genetic algorithms</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Real time</topic><topic>Response time</topic><topic>Response time (computers)</topic><topic>Scheduling</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Task scheduling</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazari, Amin</creatorcontrib><creatorcontrib>Sohrabi, Sakine</creatorcontrib><creatorcontrib>Mohammadi, Reza</creatorcontrib><creatorcontrib>Nassiri, Mohammad</creatorcontrib><creatorcontrib>Mansoorizadeh, Muharram</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazari, Amin</au><au>Sohrabi, Sakine</au><au>Mohammadi, Reza</au><au>Nassiri, Mohammad</au><au>Mansoorizadeh, Muharram</au><au>Chu, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks</atitle><jtitle>Journal of sensors</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Nowadays, with the advent of various communication technologies such as the internet of things (IoT), a large volume of data is produced that needs to be processed in real-time. Fog computing is an appropriate solution to address the requirements of different types of IoT applications. In most cases, IoT applications consist of a set of dependent tasks that can be separately processed in a heterogeneous fog environment. Scheduling these tasks in a fog environment is an NP-hard problem that needs a vast amount of time and computation resources to solve, making it infeasible for real-time applications. In addition, reducing response time and energy consumption in fog computing is an essential issue that should be taken into account in task scheduling algorithms. To address these challenges, we aim to propose a multiobjective task scheduling model to jointly improve energy efficiency and response time. To solve the model, we also propose an intelligent solution named IETIF which combines and leverages the benefits of simulated annealing and NSGA-III algorithms. Simulation results show that IETIF outperforms the state-of-the-art methods in terms of energy consumption, response time, and speedup.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/2644846</doi><orcidid>https://orcid.org/0000-0002-2139-4518</orcidid><orcidid>https://orcid.org/0000-0002-7131-1047</orcidid><orcidid>https://orcid.org/0000-0003-0455-0141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2023-11, Vol.2023 (1) |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2891543688 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Algorithms Cloud computing Cost reduction Edge computing Energy consumption Energy efficiency Energy management Genetic algorithms Internet of Things Optimization Real time Response time Response time (computers) Scheduling Simulated annealing Simulation Task scheduling Workloads |
title | IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IETIF:%20Intelligent%20Energy-Aware%20Task%20Scheduling%20Technique%20in%20IoT/Fog%20Networks&rft.jtitle=Journal%20of%20sensors&rft.au=Nazari,%20Amin&rft.date=2023-11-10&rft.volume=2023&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2023/2644846&rft_dat=%3Cproquest_cross%3E2891543688%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-8a2e49b56e3c9dde20a243589a4d0eaa1b33b0e7de14b9ee730b3a2ce264c9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891543688&rft_id=info:pmid/&rfr_iscdi=true |