Loading…
Enhancing Hydrogen Production through Integration of Electrolysis and Photocatalysis in a Cell
We present a new method for hydrogen production that combines photocatalysis and electrolysis in a cell. TiO2 was doped with Ni and nitrogen to form Ni-TiO2 and N-Ni-TiO2 photocatalysts. XRD, UV-Vis, and SEM techniques were used to characterize the resulting samples. The Ni-TiO2 and N-Ni-TiO2 sample...
Saved in:
Published in: | International journal of energy research 2023-11, Vol.2023, p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-4b0aafc4c99ea5dec7ecd049e75d73b8887f18b787dbf21bb9fa34699bbf6bca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-4b0aafc4c99ea5dec7ecd049e75d73b8887f18b787dbf21bb9fa34699bbf6bca3 |
container_end_page | 10 |
container_issue | |
container_start_page | 1 |
container_title | International journal of energy research |
container_volume | 2023 |
creator | Engge, Yohanes Maulana, Frendi Nurhuda, Muhammad Istiroyah Hakim, Lukman |
description | We present a new method for hydrogen production that combines photocatalysis and electrolysis in a cell. TiO2 was doped with Ni and nitrogen to form Ni-TiO2 and N-Ni-TiO2 photocatalysts. XRD, UV-Vis, and SEM techniques were used to characterize the resulting samples. The Ni-TiO2 and N-Ni-TiO2 samples had anatase structures with energy gaps of 2.77 eV and 2.03 eV, respectively. A 50-watt UV lamp with a wavelength of 254 nm was used as the photon source. Our results indicate that this method produces more hydrogen than the sum of hydrogen generated by separate electrolysis and photocatalysis methods. The N-Ni-TiO2 sample produced the highest yield of HHO gas among the Ni-TiO2 and TiO2 p.a samples. The underlying mechanisms responsible for this improvement, including the role of the Ni and nitrogen doping, are discussed and analyzed. |
doi_str_mv | 10.1155/2023/9881469 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2891543691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891543691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4b0aafc4c99ea5dec7ecd049e75d73b8887f18b787dbf21bb9fa34699bbf6bca3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXNG2TXMqYOhi4C4VdWfLZdtRkJhmyf29nd-3Vgfc8vIfzAHCL0SPGZTnLUU5mnDFcVPwMTDDiPMO42JyDCSIVyTiim0twFeMWoWGH6QR8LlwrnOpcA18POvjGOLgOXu9V6ryDqQ1-37Rw6ZJpgvjLvIWL3qgUfH-IXYTCabhuffJKJDFGnYMCzk3fX4MLK_pobk5zCj6eF-_z12z19rKcP60yRQhNWSGREFYVinMjSm0UNUqjghtaakokY4xazCRlVEubYym5FWR4kktpK6kEmYK7sXcX_PfexFRv_T644WSdM47LglQcD9TDSKngYwzG1rvQfYlwqDGqjwbro8H6ZHDA70e87ZwWP93_9C_3LXKb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891543691</pqid></control><display><type>article</type><title>Enhancing Hydrogen Production through Integration of Electrolysis and Photocatalysis in a Cell</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Engge, Yohanes ; Maulana, Frendi ; Nurhuda, Muhammad ; Istiroyah ; Hakim, Lukman</creator><contributor>Kamaraj, Sathish K. ; Sathish K Kamaraj</contributor><creatorcontrib>Engge, Yohanes ; Maulana, Frendi ; Nurhuda, Muhammad ; Istiroyah ; Hakim, Lukman ; Kamaraj, Sathish K. ; Sathish K Kamaraj</creatorcontrib><description>We present a new method for hydrogen production that combines photocatalysis and electrolysis in a cell. TiO2 was doped with Ni and nitrogen to form Ni-TiO2 and N-Ni-TiO2 photocatalysts. XRD, UV-Vis, and SEM techniques were used to characterize the resulting samples. The Ni-TiO2 and N-Ni-TiO2 samples had anatase structures with energy gaps of 2.77 eV and 2.03 eV, respectively. A 50-watt UV lamp with a wavelength of 254 nm was used as the photon source. Our results indicate that this method produces more hydrogen than the sum of hydrogen generated by separate electrolysis and photocatalysis methods. The N-Ni-TiO2 sample produced the highest yield of HHO gas among the Ni-TiO2 and TiO2 p.a samples. The underlying mechanisms responsible for this improvement, including the role of the Ni and nitrogen doping, are discussed and analyzed.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2023/9881469</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Alternative energy ; Anatase ; Crystal structure ; Efficiency ; Electrodes ; Electrolysis ; Electrolytes ; Energy gap ; Ethanol ; Hydrogen ; Hydrogen production ; Nitrogen ; Photocatalysis ; Spectrum analysis ; Titanium dioxide ; Ultraviolet radiation ; Wavelength</subject><ispartof>International journal of energy research, 2023-11, Vol.2023, p.1-10</ispartof><rights>Copyright © 2023 Yohanes Engge et al.</rights><rights>Copyright © 2023 Yohanes Engge et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-4b0aafc4c99ea5dec7ecd049e75d73b8887f18b787dbf21bb9fa34699bbf6bca3</citedby><cites>FETCH-LOGICAL-c337t-4b0aafc4c99ea5dec7ecd049e75d73b8887f18b787dbf21bb9fa34699bbf6bca3</cites><orcidid>0000-0002-4366-0709 ; 0000-0002-3777-0872 ; 0000-0002-9960-0756 ; 0009-0003-6188-4217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2891543691/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2891543691?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Kamaraj, Sathish K.</contributor><contributor>Sathish K Kamaraj</contributor><creatorcontrib>Engge, Yohanes</creatorcontrib><creatorcontrib>Maulana, Frendi</creatorcontrib><creatorcontrib>Nurhuda, Muhammad</creatorcontrib><creatorcontrib>Istiroyah</creatorcontrib><creatorcontrib>Hakim, Lukman</creatorcontrib><title>Enhancing Hydrogen Production through Integration of Electrolysis and Photocatalysis in a Cell</title><title>International journal of energy research</title><description>We present a new method for hydrogen production that combines photocatalysis and electrolysis in a cell. TiO2 was doped with Ni and nitrogen to form Ni-TiO2 and N-Ni-TiO2 photocatalysts. XRD, UV-Vis, and SEM techniques were used to characterize the resulting samples. The Ni-TiO2 and N-Ni-TiO2 samples had anatase structures with energy gaps of 2.77 eV and 2.03 eV, respectively. A 50-watt UV lamp with a wavelength of 254 nm was used as the photon source. Our results indicate that this method produces more hydrogen than the sum of hydrogen generated by separate electrolysis and photocatalysis methods. The N-Ni-TiO2 sample produced the highest yield of HHO gas among the Ni-TiO2 and TiO2 p.a samples. The underlying mechanisms responsible for this improvement, including the role of the Ni and nitrogen doping, are discussed and analyzed.</description><subject>Alternative energy</subject><subject>Anatase</subject><subject>Crystal structure</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy gap</subject><subject>Ethanol</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Nitrogen</subject><subject>Photocatalysis</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><subject>Wavelength</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXNG2TXMqYOhi4C4VdWfLZdtRkJhmyf29nd-3Vgfc8vIfzAHCL0SPGZTnLUU5mnDFcVPwMTDDiPMO42JyDCSIVyTiim0twFeMWoWGH6QR8LlwrnOpcA18POvjGOLgOXu9V6ryDqQ1-37Rw6ZJpgvjLvIWL3qgUfH-IXYTCabhuffJKJDFGnYMCzk3fX4MLK_pobk5zCj6eF-_z12z19rKcP60yRQhNWSGREFYVinMjSm0UNUqjghtaakokY4xazCRlVEubYym5FWR4kktpK6kEmYK7sXcX_PfexFRv_T644WSdM47LglQcD9TDSKngYwzG1rvQfYlwqDGqjwbro8H6ZHDA70e87ZwWP93_9C_3LXKb</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Engge, Yohanes</creator><creator>Maulana, Frendi</creator><creator>Nurhuda, Muhammad</creator><creator>Istiroyah</creator><creator>Hakim, Lukman</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4366-0709</orcidid><orcidid>https://orcid.org/0000-0002-3777-0872</orcidid><orcidid>https://orcid.org/0000-0002-9960-0756</orcidid><orcidid>https://orcid.org/0009-0003-6188-4217</orcidid></search><sort><creationdate>20231108</creationdate><title>Enhancing Hydrogen Production through Integration of Electrolysis and Photocatalysis in a Cell</title><author>Engge, Yohanes ; Maulana, Frendi ; Nurhuda, Muhammad ; Istiroyah ; Hakim, Lukman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4b0aafc4c99ea5dec7ecd049e75d73b8887f18b787dbf21bb9fa34699bbf6bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy</topic><topic>Anatase</topic><topic>Crystal structure</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy gap</topic><topic>Ethanol</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Nitrogen</topic><topic>Photocatalysis</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engge, Yohanes</creatorcontrib><creatorcontrib>Maulana, Frendi</creatorcontrib><creatorcontrib>Nurhuda, Muhammad</creatorcontrib><creatorcontrib>Istiroyah</creatorcontrib><creatorcontrib>Hakim, Lukman</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engge, Yohanes</au><au>Maulana, Frendi</au><au>Nurhuda, Muhammad</au><au>Istiroyah</au><au>Hakim, Lukman</au><au>Kamaraj, Sathish K.</au><au>Sathish K Kamaraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Hydrogen Production through Integration of Electrolysis and Photocatalysis in a Cell</atitle><jtitle>International journal of energy research</jtitle><date>2023-11-08</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>We present a new method for hydrogen production that combines photocatalysis and electrolysis in a cell. TiO2 was doped with Ni and nitrogen to form Ni-TiO2 and N-Ni-TiO2 photocatalysts. XRD, UV-Vis, and SEM techniques were used to characterize the resulting samples. The Ni-TiO2 and N-Ni-TiO2 samples had anatase structures with energy gaps of 2.77 eV and 2.03 eV, respectively. A 50-watt UV lamp with a wavelength of 254 nm was used as the photon source. Our results indicate that this method produces more hydrogen than the sum of hydrogen generated by separate electrolysis and photocatalysis methods. The N-Ni-TiO2 sample produced the highest yield of HHO gas among the Ni-TiO2 and TiO2 p.a samples. The underlying mechanisms responsible for this improvement, including the role of the Ni and nitrogen doping, are discussed and analyzed.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2023/9881469</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4366-0709</orcidid><orcidid>https://orcid.org/0000-0002-3777-0872</orcidid><orcidid>https://orcid.org/0000-0002-9960-0756</orcidid><orcidid>https://orcid.org/0009-0003-6188-4217</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2023-11, Vol.2023, p.1-10 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2891543691 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Alternative energy Anatase Crystal structure Efficiency Electrodes Electrolysis Electrolytes Energy gap Ethanol Hydrogen Hydrogen production Nitrogen Photocatalysis Spectrum analysis Titanium dioxide Ultraviolet radiation Wavelength |
title | Enhancing Hydrogen Production through Integration of Electrolysis and Photocatalysis in a Cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Hydrogen%20Production%20through%20Integration%20of%20Electrolysis%20and%20Photocatalysis%20in%20a%20Cell&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Engge,%20Yohanes&rft.date=2023-11-08&rft.volume=2023&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2023/9881469&rft_dat=%3Cproquest_cross%3E2891543691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-4b0aafc4c99ea5dec7ecd049e75d73b8887f18b787dbf21bb9fa34699bbf6bca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891543691&rft_id=info:pmid/&rfr_iscdi=true |