Loading…
Survey of Low-Resource Machine Translation
We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in...
Saved in:
Published in: | Computational linguistics - Association for Computational Linguistics 2022-09, Vol.48 (3), p.673-732 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-52c84c40bad576ec804563d83cbb8ad87378d0daba7315ab68910b9eefe155bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-52c84c40bad576ec804563d83cbb8ad87378d0daba7315ab68910b9eefe155bd3 |
container_end_page | 732 |
container_issue | 3 |
container_start_page | 673 |
container_title | Computational linguistics - Association for Computational Linguistics |
container_volume | 48 |
creator | Haddow, Barry Bawden, Rachel Barone, Antonio Valerio Miceli Helcl, Jindřich Birch, Alexandra |
description | We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT. |
doi_str_mv | 10.1162/coli_a_00446 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2891834237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c67ef92aeb924e50a96fada3b039dfa7</doaj_id><sourcerecordid>2891834237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-52c84c40bad576ec804563d83cbb8ad87378d0daba7315ab68910b9eefe155bd3</originalsourceid><addsrcrecordid>eNp1kV1rE0EUhgdRMEbv_AEBb1S69czXzsydpWhbiAharw9nPtZO2GbibJJSf72brpQW9OrAy8Nzvhh7zeGY81Z8CKXPSAigVPuEzbiW0DjJxVM2A-t4I4Cb5-zFMKwAwIA0M_b--67u0-2idItluWm-paHsakiLLxSu8jotLiuth562uaxfsmcd9UN69bfO2Y_Pny5Pz5vl17OL05NlE5Tj20aLYFVQ4Clq06ZgQelWRiuD95aiNdLYCJE8Gck1-XacDLxLqUtcax_lnF1M3lhohZuar6neYqGMd0GpP5HqNoc-YWhN6pyg5J1QSQO5tqNI0oN0sRsbzNm7yXVF_SPV-ckSDxlIZZzRZi9H9s3Ebmr5tUvDFlfjLdbjqijGGa1UQh6MRxMVahmGmrp7LQc8fAEffmHE3074dX7g-w_68R_oAdkrmyVKobgAFCAEgkPg-DtvHiv-AD3mm6E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891834237</pqid></control><display><type>article</type><title>Survey of Low-Resource Machine Translation</title><source>EBSCOhost MLA International Bibliography With Full Text</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Haddow, Barry ; Bawden, Rachel ; Barone, Antonio Valerio Miceli ; Helcl, Jindřich ; Birch, Alexandra</creator><creatorcontrib>Haddow, Barry ; Bawden, Rachel ; Barone, Antonio Valerio Miceli ; Helcl, Jindřich ; Birch, Alexandra</creatorcontrib><description>We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT.</description><identifier>ISSN: 0891-2017</identifier><identifier>EISSN: 1530-9312</identifier><identifier>DOI: 10.1162/coli_a_00446</identifier><language>eng</language><publisher>One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA: MIT Press</publisher><subject>Computation and Language ; Computer Science ; Machine translation ; Polls & surveys ; Training</subject><ispartof>Computational linguistics - Association for Computational Linguistics, 2022-09, Vol.48 (3), p.673-732</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-52c84c40bad576ec804563d83cbb8ad87378d0daba7315ab68910b9eefe155bd3</citedby><cites>FETCH-LOGICAL-c491t-52c84c40bad576ec804563d83cbb8ad87378d0daba7315ab68910b9eefe155bd3</cites><orcidid>0000-0001-9553-1768 ; 0000-0002-9022-3405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,31269</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03479757$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haddow, Barry</creatorcontrib><creatorcontrib>Bawden, Rachel</creatorcontrib><creatorcontrib>Barone, Antonio Valerio Miceli</creatorcontrib><creatorcontrib>Helcl, Jindřich</creatorcontrib><creatorcontrib>Birch, Alexandra</creatorcontrib><title>Survey of Low-Resource Machine Translation</title><title>Computational linguistics - Association for Computational Linguistics</title><description>We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT.</description><subject>Computation and Language</subject><subject>Computer Science</subject><subject>Machine translation</subject><subject>Polls & surveys</subject><subject>Training</subject><issn>0891-2017</issn><issn>1530-9312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><sourceid>DOA</sourceid><recordid>eNp1kV1rE0EUhgdRMEbv_AEBb1S69czXzsydpWhbiAharw9nPtZO2GbibJJSf72brpQW9OrAy8Nzvhh7zeGY81Z8CKXPSAigVPuEzbiW0DjJxVM2A-t4I4Cb5-zFMKwAwIA0M_b--67u0-2idItluWm-paHsakiLLxSu8jotLiuth562uaxfsmcd9UN69bfO2Y_Pny5Pz5vl17OL05NlE5Tj20aLYFVQ4Clq06ZgQelWRiuD95aiNdLYCJE8Gck1-XacDLxLqUtcax_lnF1M3lhohZuar6neYqGMd0GpP5HqNoc-YWhN6pyg5J1QSQO5tqNI0oN0sRsbzNm7yXVF_SPV-ckSDxlIZZzRZi9H9s3Ebmr5tUvDFlfjLdbjqijGGa1UQh6MRxMVahmGmrp7LQc8fAEffmHE3074dX7g-w_68R_oAdkrmyVKobgAFCAEgkPg-DtvHiv-AD3mm6E</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Haddow, Barry</creator><creator>Bawden, Rachel</creator><creator>Barone, Antonio Valerio Miceli</creator><creator>Helcl, Jindřich</creator><creator>Birch, Alexandra</creator><general>MIT Press</general><general>MIT Press Journals, The</general><general>Massachusetts Institute of Technology Press (MIT Press)</general><general>The MIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9553-1768</orcidid><orcidid>https://orcid.org/0000-0002-9022-3405</orcidid></search><sort><creationdate>20220901</creationdate><title>Survey of Low-Resource Machine Translation</title><author>Haddow, Barry ; Bawden, Rachel ; Barone, Antonio Valerio Miceli ; Helcl, Jindřich ; Birch, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-52c84c40bad576ec804563d83cbb8ad87378d0daba7315ab68910b9eefe155bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computation and Language</topic><topic>Computer Science</topic><topic>Machine translation</topic><topic>Polls & surveys</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddow, Barry</creatorcontrib><creatorcontrib>Bawden, Rachel</creatorcontrib><creatorcontrib>Barone, Antonio Valerio Miceli</creatorcontrib><creatorcontrib>Helcl, Jindřich</creatorcontrib><creatorcontrib>Birch, Alexandra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals</collection><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddow, Barry</au><au>Bawden, Rachel</au><au>Barone, Antonio Valerio Miceli</au><au>Helcl, Jindřich</au><au>Birch, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey of Low-Resource Machine Translation</atitle><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>48</volume><issue>3</issue><spage>673</spage><epage>732</epage><pages>673-732</pages><issn>0891-2017</issn><eissn>1530-9312</eissn><abstract>We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT.</abstract><cop>One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA</cop><pub>MIT Press</pub><doi>10.1162/coli_a_00446</doi><tpages>60</tpages><orcidid>https://orcid.org/0000-0001-9553-1768</orcidid><orcidid>https://orcid.org/0000-0002-9022-3405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-2017 |
ispartof | Computational linguistics - Association for Computational Linguistics, 2022-09, Vol.48 (3), p.673-732 |
issn | 0891-2017 1530-9312 |
language | eng |
recordid | cdi_proquest_journals_2891834237 |
source | EBSCOhost MLA International Bibliography With Full Text; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); Linguistics and Language Behavior Abstracts (LLBA) |
subjects | Computation and Language Computer Science Machine translation Polls & surveys Training |
title | Survey of Low-Resource Machine Translation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20of%20Low-Resource%20Machine%20Translation&rft.jtitle=Computational%20linguistics%20-%20Association%20for%20Computational%20Linguistics&rft.au=Haddow,%20Barry&rft.date=2022-09-01&rft.volume=48&rft.issue=3&rft.spage=673&rft.epage=732&rft.pages=673-732&rft.issn=0891-2017&rft.eissn=1530-9312&rft_id=info:doi/10.1162/coli_a_00446&rft_dat=%3Cproquest_hal_p%3E2891834237%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-52c84c40bad576ec804563d83cbb8ad87378d0daba7315ab68910b9eefe155bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891834237&rft_id=info:pmid/&rfr_iscdi=true |