Loading…
GEE-Based monitoring method of key management nodes in cotton production
The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, util...
Saved in:
Published in: | International journal of digital earth 2023-12, Vol.16 (1), p.1907-1922 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943 |
container_end_page | 1922 |
container_issue | 1 |
container_start_page | 1907 |
container_title | International journal of digital earth |
container_volume | 16 |
creator | Yang, Weiguang Xu, Weicheng Yan, Kangtin Cui, Zongyin Chen, Pengchao Zhang, Lei Lan, Yubin |
description | The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle. |
doi_str_mv | 10.1080/17538947.2023.2218119 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2892021747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9078417c333b4ad0bfb09cb7185c54dd</doaj_id><sourcerecordid>2892021747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</originalsourceid><addsrcrecordid>eNp9UU1PGzEUXFVUKtD-hEqWOG_6_BXbNwoKBAmJCz1bXtubOs36UdsRyr_vpqEce3pPo5l5H9N1XyksKGj4RpXk2gi1YMD4gjGqKTUfuvMj3msj5dl7L9Sn7qLWLcAShODn3fp-tepvXI2BTJhTw5Lyhkyx_cRAcCS_4oFMLrtNnGJuJGOIlaRMPLaGmbwUDHvfEubP3cfR7Wr88lYvux93q-fbdf_4dP9w-_2x90LS1uvgjQ-BGemkYhooY04zoDAsjWFmXHIdAPhApRcgJDN0iNQpthzFEKIR_LJ7OPkGdFv7UtLkysGiS_YvgGVjXWnJ76I1oLSgynPOB-ECDOMAxg-KaumlCGH2ujp5zWf83sfa7Bb3Jc_rW6bN_E2qhJpZ8sTyBWstcXyfSsEeA7D_ArDHAOxbALPu-qRLecQyuVcsu2CbO-ywjMVln6rl_7f4A6ufinU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892021747</pqid></control><display><type>article</type><title>GEE-Based monitoring method of key management nodes in cotton production</title><source>Taylor & Francis Open Access</source><source>EZB Electronic Journals Library</source><creator>Yang, Weiguang ; Xu, Weicheng ; Yan, Kangtin ; Cui, Zongyin ; Chen, Pengchao ; Zhang, Lei ; Lan, Yubin</creator><creatorcontrib>Yang, Weiguang ; Xu, Weicheng ; Yan, Kangtin ; Cui, Zongyin ; Chen, Pengchao ; Zhang, Lei ; Lan, Yubin</creatorcontrib><description>The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.</description><identifier>ISSN: 1753-8947</identifier><identifier>EISSN: 1753-8955</identifier><identifier>DOI: 10.1080/17538947.2023.2218119</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>abandoned cropland detection ; Agricultural land ; Classification ; Cotton ; cotton production ; crop monitoring ; Cultivation ; Google Earth Engine ; Machine learning ; Monitoring ; Monitoring methods ; Nodes ; Remote sensing</subject><ispartof>International journal of digital earth, 2023-12, Vol.16 (1), p.1907-1922</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</citedby><cites>FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</cites><orcidid>0000-0002-9862-5839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17538947.2023.2218119$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17538947.2023.2218119$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Yang, Weiguang</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Yan, Kangtin</creatorcontrib><creatorcontrib>Cui, Zongyin</creatorcontrib><creatorcontrib>Chen, Pengchao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><title>GEE-Based monitoring method of key management nodes in cotton production</title><title>International journal of digital earth</title><description>The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.</description><subject>abandoned cropland detection</subject><subject>Agricultural land</subject><subject>Classification</subject><subject>Cotton</subject><subject>cotton production</subject><subject>crop monitoring</subject><subject>Cultivation</subject><subject>Google Earth Engine</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Nodes</subject><subject>Remote sensing</subject><issn>1753-8947</issn><issn>1753-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1PGzEUXFVUKtD-hEqWOG_6_BXbNwoKBAmJCz1bXtubOs36UdsRyr_vpqEce3pPo5l5H9N1XyksKGj4RpXk2gi1YMD4gjGqKTUfuvMj3msj5dl7L9Sn7qLWLcAShODn3fp-tepvXI2BTJhTw5Lyhkyx_cRAcCS_4oFMLrtNnGJuJGOIlaRMPLaGmbwUDHvfEubP3cfR7Wr88lYvux93q-fbdf_4dP9w-_2x90LS1uvgjQ-BGemkYhooY04zoDAsjWFmXHIdAPhApRcgJDN0iNQpthzFEKIR_LJ7OPkGdFv7UtLkysGiS_YvgGVjXWnJ76I1oLSgynPOB-ECDOMAxg-KaumlCGH2ujp5zWf83sfa7Bb3Jc_rW6bN_E2qhJpZ8sTyBWstcXyfSsEeA7D_ArDHAOxbALPu-qRLecQyuVcsu2CbO-ywjMVln6rl_7f4A6ufinU</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Yang, Weiguang</creator><creator>Xu, Weicheng</creator><creator>Yan, Kangtin</creator><creator>Cui, Zongyin</creator><creator>Chen, Pengchao</creator><creator>Zhang, Lei</creator><creator>Lan, Yubin</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9862-5839</orcidid></search><sort><creationdate>20231231</creationdate><title>GEE-Based monitoring method of key management nodes in cotton production</title><author>Yang, Weiguang ; Xu, Weicheng ; Yan, Kangtin ; Cui, Zongyin ; Chen, Pengchao ; Zhang, Lei ; Lan, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>abandoned cropland detection</topic><topic>Agricultural land</topic><topic>Classification</topic><topic>Cotton</topic><topic>cotton production</topic><topic>crop monitoring</topic><topic>Cultivation</topic><topic>Google Earth Engine</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Nodes</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weiguang</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Yan, Kangtin</creatorcontrib><creatorcontrib>Cui, Zongyin</creatorcontrib><creatorcontrib>Chen, Pengchao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of digital earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Weiguang</au><au>Xu, Weicheng</au><au>Yan, Kangtin</au><au>Cui, Zongyin</au><au>Chen, Pengchao</au><au>Zhang, Lei</au><au>Lan, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEE-Based monitoring method of key management nodes in cotton production</atitle><jtitle>International journal of digital earth</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>1907</spage><epage>1922</epage><pages>1907-1922</pages><issn>1753-8947</issn><eissn>1753-8955</eissn><abstract>The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/17538947.2023.2218119</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9862-5839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-8947 |
ispartof | International journal of digital earth, 2023-12, Vol.16 (1), p.1907-1922 |
issn | 1753-8947 1753-8955 |
language | eng |
recordid | cdi_proquest_journals_2892021747 |
source | Taylor & Francis Open Access; EZB Electronic Journals Library |
subjects | abandoned cropland detection Agricultural land Classification Cotton cotton production crop monitoring Cultivation Google Earth Engine Machine learning Monitoring Monitoring methods Nodes Remote sensing |
title | GEE-Based monitoring method of key management nodes in cotton production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEE-Based%20monitoring%20method%20of%20key%20management%20nodes%20in%20cotton%20production&rft.jtitle=International%20journal%20of%20digital%20earth&rft.au=Yang,%20Weiguang&rft.date=2023-12-31&rft.volume=16&rft.issue=1&rft.spage=1907&rft.epage=1922&rft.pages=1907-1922&rft.issn=1753-8947&rft.eissn=1753-8955&rft_id=info:doi/10.1080/17538947.2023.2218119&rft_dat=%3Cproquest_doaj_%3E2892021747%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892021747&rft_id=info:pmid/&rfr_iscdi=true |