Loading…

GEE-Based monitoring method of key management nodes in cotton production

The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, util...

Full description

Saved in:
Bibliographic Details
Published in:International journal of digital earth 2023-12, Vol.16 (1), p.1907-1922
Main Authors: Yang, Weiguang, Xu, Weicheng, Yan, Kangtin, Cui, Zongyin, Chen, Pengchao, Zhang, Lei, Lan, Yubin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943
cites cdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943
container_end_page 1922
container_issue 1
container_start_page 1907
container_title International journal of digital earth
container_volume 16
creator Yang, Weiguang
Xu, Weicheng
Yan, Kangtin
Cui, Zongyin
Chen, Pengchao
Zhang, Lei
Lan, Yubin
description The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.
doi_str_mv 10.1080/17538947.2023.2218119
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2892021747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9078417c333b4ad0bfb09cb7185c54dd</doaj_id><sourcerecordid>2892021747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</originalsourceid><addsrcrecordid>eNp9UU1PGzEUXFVUKtD-hEqWOG_6_BXbNwoKBAmJCz1bXtubOs36UdsRyr_vpqEce3pPo5l5H9N1XyksKGj4RpXk2gi1YMD4gjGqKTUfuvMj3msj5dl7L9Sn7qLWLcAShODn3fp-tepvXI2BTJhTw5Lyhkyx_cRAcCS_4oFMLrtNnGJuJGOIlaRMPLaGmbwUDHvfEubP3cfR7Wr88lYvux93q-fbdf_4dP9w-_2x90LS1uvgjQ-BGemkYhooY04zoDAsjWFmXHIdAPhApRcgJDN0iNQpthzFEKIR_LJ7OPkGdFv7UtLkysGiS_YvgGVjXWnJ76I1oLSgynPOB-ECDOMAxg-KaumlCGH2ujp5zWf83sfa7Bb3Jc_rW6bN_E2qhJpZ8sTyBWstcXyfSsEeA7D_ArDHAOxbALPu-qRLecQyuVcsu2CbO-ywjMVln6rl_7f4A6ufinU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892021747</pqid></control><display><type>article</type><title>GEE-Based monitoring method of key management nodes in cotton production</title><source>Taylor &amp; Francis Open Access</source><source>EZB Electronic Journals Library</source><creator>Yang, Weiguang ; Xu, Weicheng ; Yan, Kangtin ; Cui, Zongyin ; Chen, Pengchao ; Zhang, Lei ; Lan, Yubin</creator><creatorcontrib>Yang, Weiguang ; Xu, Weicheng ; Yan, Kangtin ; Cui, Zongyin ; Chen, Pengchao ; Zhang, Lei ; Lan, Yubin</creatorcontrib><description>The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.</description><identifier>ISSN: 1753-8947</identifier><identifier>EISSN: 1753-8955</identifier><identifier>DOI: 10.1080/17538947.2023.2218119</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>abandoned cropland detection ; Agricultural land ; Classification ; Cotton ; cotton production ; crop monitoring ; Cultivation ; Google Earth Engine ; Machine learning ; Monitoring ; Monitoring methods ; Nodes ; Remote sensing</subject><ispartof>International journal of digital earth, 2023-12, Vol.16 (1), p.1907-1922</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</citedby><cites>FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</cites><orcidid>0000-0002-9862-5839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17538947.2023.2218119$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17538947.2023.2218119$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Yang, Weiguang</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Yan, Kangtin</creatorcontrib><creatorcontrib>Cui, Zongyin</creatorcontrib><creatorcontrib>Chen, Pengchao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><title>GEE-Based monitoring method of key management nodes in cotton production</title><title>International journal of digital earth</title><description>The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.</description><subject>abandoned cropland detection</subject><subject>Agricultural land</subject><subject>Classification</subject><subject>Cotton</subject><subject>cotton production</subject><subject>crop monitoring</subject><subject>Cultivation</subject><subject>Google Earth Engine</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Nodes</subject><subject>Remote sensing</subject><issn>1753-8947</issn><issn>1753-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1PGzEUXFVUKtD-hEqWOG_6_BXbNwoKBAmJCz1bXtubOs36UdsRyr_vpqEce3pPo5l5H9N1XyksKGj4RpXk2gi1YMD4gjGqKTUfuvMj3msj5dl7L9Sn7qLWLcAShODn3fp-tepvXI2BTJhTw5Lyhkyx_cRAcCS_4oFMLrtNnGJuJGOIlaRMPLaGmbwUDHvfEubP3cfR7Wr88lYvux93q-fbdf_4dP9w-_2x90LS1uvgjQ-BGemkYhooY04zoDAsjWFmXHIdAPhApRcgJDN0iNQpthzFEKIR_LJ7OPkGdFv7UtLkysGiS_YvgGVjXWnJ76I1oLSgynPOB-ECDOMAxg-KaumlCGH2ujp5zWf83sfa7Bb3Jc_rW6bN_E2qhJpZ8sTyBWstcXyfSsEeA7D_ArDHAOxbALPu-qRLecQyuVcsu2CbO-ywjMVln6rl_7f4A6ufinU</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Yang, Weiguang</creator><creator>Xu, Weicheng</creator><creator>Yan, Kangtin</creator><creator>Cui, Zongyin</creator><creator>Chen, Pengchao</creator><creator>Zhang, Lei</creator><creator>Lan, Yubin</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9862-5839</orcidid></search><sort><creationdate>20231231</creationdate><title>GEE-Based monitoring method of key management nodes in cotton production</title><author>Yang, Weiguang ; Xu, Weicheng ; Yan, Kangtin ; Cui, Zongyin ; Chen, Pengchao ; Zhang, Lei ; Lan, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>abandoned cropland detection</topic><topic>Agricultural land</topic><topic>Classification</topic><topic>Cotton</topic><topic>cotton production</topic><topic>crop monitoring</topic><topic>Cultivation</topic><topic>Google Earth Engine</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Nodes</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weiguang</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Yan, Kangtin</creatorcontrib><creatorcontrib>Cui, Zongyin</creatorcontrib><creatorcontrib>Chen, Pengchao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of digital earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Weiguang</au><au>Xu, Weicheng</au><au>Yan, Kangtin</au><au>Cui, Zongyin</au><au>Chen, Pengchao</au><au>Zhang, Lei</au><au>Lan, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEE-Based monitoring method of key management nodes in cotton production</atitle><jtitle>International journal of digital earth</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>1907</spage><epage>1922</epage><pages>1907-1922</pages><issn>1753-8947</issn><eissn>1753-8955</eissn><abstract>The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17538947.2023.2218119</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9862-5839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-8947
ispartof International journal of digital earth, 2023-12, Vol.16 (1), p.1907-1922
issn 1753-8947
1753-8955
language eng
recordid cdi_proquest_journals_2892021747
source Taylor & Francis Open Access; EZB Electronic Journals Library
subjects abandoned cropland detection
Agricultural land
Classification
Cotton
cotton production
crop monitoring
Cultivation
Google Earth Engine
Machine learning
Monitoring
Monitoring methods
Nodes
Remote sensing
title GEE-Based monitoring method of key management nodes in cotton production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEE-Based%20monitoring%20method%20of%20key%20management%20nodes%20in%20cotton%20production&rft.jtitle=International%20journal%20of%20digital%20earth&rft.au=Yang,%20Weiguang&rft.date=2023-12-31&rft.volume=16&rft.issue=1&rft.spage=1907&rft.epage=1922&rft.pages=1907-1922&rft.issn=1753-8947&rft.eissn=1753-8955&rft_id=info:doi/10.1080/17538947.2023.2218119&rft_dat=%3Cproquest_doaj_%3E2892021747%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-8dc9cdd295a57280122a82010b69929f638d003b15c4045291be1a726f4bde943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892021747&rft_id=info:pmid/&rfr_iscdi=true