Loading…
LO2net: Global–Local Semantics Coupled Network for scene-specific video foreground extraction with less supervision
Video foreground extraction has been widely applied to quantitative fields and attracts great attention all over the world. Nevertheless, the performance of a such method can be easily reduced due to the dizzy environment. To tackle this problem, the global semantics (e.g., background statistics) an...
Saved in:
Published in: | Pattern analysis and applications : PAA 2023, Vol.26 (4), p.1671-1683 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p157t-476656f488dfcdde19fa03390f6c7dceb1e856e5ce481fab22160a2ef292d7593 |
container_end_page | 1683 |
container_issue | 4 |
container_start_page | 1671 |
container_title | Pattern analysis and applications : PAA |
container_volume | 26 |
creator | Ruan, Tao Wei, Shikui Zhao, Yao Guo, Baoqing Yu, Zujun |
description | Video foreground extraction has been widely applied to quantitative fields and attracts great attention all over the world. Nevertheless, the performance of a such method can be easily reduced due to the dizzy environment. To tackle this problem, the global semantics (e.g., background statistics) and the local semantics (e.g., boundary areas) can be utilized to better distinguish foreground objects from the complex background. In this paper, we investigate how to effectively leverage the above two kinds of semantics. For global semantics, two convolutional modules are designed to take advantage of data-level background priors and feature-level multi-scale characteristics, respectively; for local semantics, another module is further put forward to be aware of the semantic edges between foreground and background. The three modules are intertwined with each other, yielding a simple yet effective deep framework named g
L
O
bal–
L
O
cal Semantics Coupled Network (
L
O
2
Net), which is end-to-end trainable in a scene-specific manner. Benefiting from the
L
O
2
Net, we achieve superior performance on multiple public datasets, with less supervision trained against several state-of-the-art methods. |
doi_str_mv | 10.1007/s10044-023-01193-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2892307373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892307373</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-476656f488dfcdde19fa03390f6c7dceb1e856e5ce481fab22160a2ef292d7593</originalsourceid><addsrcrecordid>eNpFkM1OwzAMgCMEEmPwApwicQ7kp2labmiCgTSxAyBxq7LEGRmlKUm7ceQdeEOehMIQXGzL_mRbH0LHjJ4yStVZGmKWEcoFoYyVgsgdNGKZEERJ-bj7V2dsHx2ktKJUCMGLEepnc95Ad46ndVjo-vP9YxaMrvEdvOim8ybhSejbGiy-hW4T4jN2IeJkoAGSWjDeeYPX3kL4HsAyhr6xGN66qE3nQ4M3vnvCNaSEU99CXPs0dA_RntN1gqPfPEYPV5f3k2sym09vJhcz0jKpOpKpPJe5y4rCOmMtsNLp4fGSutwoa2DBoJA5SANZwZxecM5yqjk4XnKrZCnG6GS7t43htYfUVavQx2Y4WfGi5IIqocRAiS2V2uibJcR_itHq22-19VsNfqsfv5UUX3QjcR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892307373</pqid></control><display><type>article</type><title>LO2net: Global–Local Semantics Coupled Network for scene-specific video foreground extraction with less supervision</title><source>Springer Link</source><creator>Ruan, Tao ; Wei, Shikui ; Zhao, Yao ; Guo, Baoqing ; Yu, Zujun</creator><creatorcontrib>Ruan, Tao ; Wei, Shikui ; Zhao, Yao ; Guo, Baoqing ; Yu, Zujun</creatorcontrib><description>Video foreground extraction has been widely applied to quantitative fields and attracts great attention all over the world. Nevertheless, the performance of a such method can be easily reduced due to the dizzy environment. To tackle this problem, the global semantics (e.g., background statistics) and the local semantics (e.g., boundary areas) can be utilized to better distinguish foreground objects from the complex background. In this paper, we investigate how to effectively leverage the above two kinds of semantics. For global semantics, two convolutional modules are designed to take advantage of data-level background priors and feature-level multi-scale characteristics, respectively; for local semantics, another module is further put forward to be aware of the semantic edges between foreground and background. The three modules are intertwined with each other, yielding a simple yet effective deep framework named g
L
O
bal–
L
O
cal Semantics Coupled Network (
L
O
2
Net), which is end-to-end trainable in a scene-specific manner. Benefiting from the
L
O
2
Net, we achieve superior performance on multiple public datasets, with less supervision trained against several state-of-the-art methods.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-023-01193-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Modules ; Pattern Recognition ; Semantics ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2023, Vol.26 (4), p.1671-1683</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-476656f488dfcdde19fa03390f6c7dceb1e856e5ce481fab22160a2ef292d7593</cites><orcidid>0000-0002-0110-8107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ruan, Tao</creatorcontrib><creatorcontrib>Wei, Shikui</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><creatorcontrib>Guo, Baoqing</creatorcontrib><creatorcontrib>Yu, Zujun</creatorcontrib><title>LO2net: Global–Local Semantics Coupled Network for scene-specific video foreground extraction with less supervision</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>Video foreground extraction has been widely applied to quantitative fields and attracts great attention all over the world. Nevertheless, the performance of a such method can be easily reduced due to the dizzy environment. To tackle this problem, the global semantics (e.g., background statistics) and the local semantics (e.g., boundary areas) can be utilized to better distinguish foreground objects from the complex background. In this paper, we investigate how to effectively leverage the above two kinds of semantics. For global semantics, two convolutional modules are designed to take advantage of data-level background priors and feature-level multi-scale characteristics, respectively; for local semantics, another module is further put forward to be aware of the semantic edges between foreground and background. The three modules are intertwined with each other, yielding a simple yet effective deep framework named g
L
O
bal–
L
O
cal Semantics Coupled Network (
L
O
2
Net), which is end-to-end trainable in a scene-specific manner. Benefiting from the
L
O
2
Net, we achieve superior performance on multiple public datasets, with less supervision trained against several state-of-the-art methods.</description><subject>Computer Science</subject><subject>Modules</subject><subject>Pattern Recognition</subject><subject>Semantics</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM1OwzAMgCMEEmPwApwicQ7kp2labmiCgTSxAyBxq7LEGRmlKUm7ceQdeEOehMIQXGzL_mRbH0LHjJ4yStVZGmKWEcoFoYyVgsgdNGKZEERJ-bj7V2dsHx2ktKJUCMGLEepnc95Ad46ndVjo-vP9YxaMrvEdvOim8ybhSejbGiy-hW4T4jN2IeJkoAGSWjDeeYPX3kL4HsAyhr6xGN66qE3nQ4M3vnvCNaSEU99CXPs0dA_RntN1gqPfPEYPV5f3k2sym09vJhcz0jKpOpKpPJe5y4rCOmMtsNLp4fGSutwoa2DBoJA5SANZwZxecM5yqjk4XnKrZCnG6GS7t43htYfUVavQx2Y4WfGi5IIqocRAiS2V2uibJcR_itHq22-19VsNfqsfv5UUX3QjcR4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ruan, Tao</creator><creator>Wei, Shikui</creator><creator>Zhao, Yao</creator><creator>Guo, Baoqing</creator><creator>Yu, Zujun</creator><general>Springer London</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0110-8107</orcidid></search><sort><creationdate>2023</creationdate><title>LO2net: Global–Local Semantics Coupled Network for scene-specific video foreground extraction with less supervision</title><author>Ruan, Tao ; Wei, Shikui ; Zhao, Yao ; Guo, Baoqing ; Yu, Zujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-476656f488dfcdde19fa03390f6c7dceb1e856e5ce481fab22160a2ef292d7593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Modules</topic><topic>Pattern Recognition</topic><topic>Semantics</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Tao</creatorcontrib><creatorcontrib>Wei, Shikui</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><creatorcontrib>Guo, Baoqing</creatorcontrib><creatorcontrib>Yu, Zujun</creatorcontrib><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Tao</au><au>Wei, Shikui</au><au>Zhao, Yao</au><au>Guo, Baoqing</au><au>Yu, Zujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LO2net: Global–Local Semantics Coupled Network for scene-specific video foreground extraction with less supervision</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2023</date><risdate>2023</risdate><volume>26</volume><issue>4</issue><spage>1671</spage><epage>1683</epage><pages>1671-1683</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>Video foreground extraction has been widely applied to quantitative fields and attracts great attention all over the world. Nevertheless, the performance of a such method can be easily reduced due to the dizzy environment. To tackle this problem, the global semantics (e.g., background statistics) and the local semantics (e.g., boundary areas) can be utilized to better distinguish foreground objects from the complex background. In this paper, we investigate how to effectively leverage the above two kinds of semantics. For global semantics, two convolutional modules are designed to take advantage of data-level background priors and feature-level multi-scale characteristics, respectively; for local semantics, another module is further put forward to be aware of the semantic edges between foreground and background. The three modules are intertwined with each other, yielding a simple yet effective deep framework named g
L
O
bal–
L
O
cal Semantics Coupled Network (
L
O
2
Net), which is end-to-end trainable in a scene-specific manner. Benefiting from the
L
O
2
Net, we achieve superior performance on multiple public datasets, with less supervision trained against several state-of-the-art methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-023-01193-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0110-8107</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2023, Vol.26 (4), p.1671-1683 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_proquest_journals_2892307373 |
source | Springer Link |
subjects | Computer Science Modules Pattern Recognition Semantics Theoretical Advances |
title | LO2net: Global–Local Semantics Coupled Network for scene-specific video foreground extraction with less supervision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LO2net:%20Global%E2%80%93Local%20Semantics%20Coupled%20Network%20for%20scene-specific%20video%20foreground%20extraction%20with%20less%20supervision&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Ruan,%20Tao&rft.date=2023&rft.volume=26&rft.issue=4&rft.spage=1671&rft.epage=1683&rft.pages=1671-1683&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-023-01193-5&rft_dat=%3Cproquest_sprin%3E2892307373%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-476656f488dfcdde19fa03390f6c7dceb1e856e5ce481fab22160a2ef292d7593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892307373&rft_id=info:pmid/&rfr_iscdi=true |