Loading…

Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming

Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned...

Full description

Saved in:
Bibliographic Details
Published in:IEEE wireless communications 2023-10, Vol.30 (5), p.179-186
Main Authors: Ahn, Yongjun, Kim, Jinhong, Kim, Seungnyun, Shim, Kyuhong, Kim, Jiyoung, Kim, Sangtae, Shim, Byonghyo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523
cites cdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523
container_end_page 186
container_issue 5
container_start_page 179
container_title IEEE wireless communications
container_volume 30
creator Ahn, Yongjun
Kim, Jinhong
Kim, Seungnyun
Shim, Kyuhong
Kim, Jiyoung
Kim, Sangtae
Shim, Byonghyo
description Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management.
doi_str_mv 10.1109/MWC.007.2200155
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892375418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892375418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKtnrwHP2ybZfK23umgttHipegxxN6kp3aQmu4j-erPYy8zw8jAzPADcYjTDGFXzzXs9Q0jMCEEIM3YGJrnKAnEpzse55AUmkl6Cq5T2GRGc8QlotuFbxxaufG8OB7czvocbl6fO9CZC7Vu4NVF_mtj_wjp03eBdo3sXPLQhQr68H9PjMMJvLuW8WLjWtPDB6C4TnfO7a3Bh9SGZm1Ofgtenx239XKxflqt6sS6a_DMtJOFVhSpLJRUCNxVn1HLEGaacSszpBxVMIi0YNlZbLohFDSqNRdYwzBkpp-Duf-8xhq_BpF7twxB9PqmIrEgpGMUyU_N_qokhpWisOkbX6fijMFKjSZVNqmxSnUyWf3hPZL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892375418</pqid></control><display><type>article</type><title>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ahn, Yongjun ; Kim, Jinhong ; Kim, Seungnyun ; Shim, Kyuhong ; Kim, Jiyoung ; Kim, Sangtae ; Shim, Byonghyo</creator><creatorcontrib>Ahn, Yongjun ; Kim, Jinhong ; Kim, Seungnyun ; Shim, Kyuhong ; Kim, Jiyoung ; Kim, Sangtae ; Shim, Byonghyo</creatorcontrib><description>Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.007.2200155</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>5G mobile communication ; Antenna arrays ; Beamforming ; Computer vision ; Energy consumption ; Millimeter waves ; Radio equipment ; Reduction</subject><ispartof>IEEE wireless communications, 2023-10, Vol.30 (5), p.179-186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</citedby><cites>FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Ahn, Yongjun</creatorcontrib><creatorcontrib>Kim, Jinhong</creatorcontrib><creatorcontrib>Kim, Seungnyun</creatorcontrib><creatorcontrib>Shim, Kyuhong</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><creatorcontrib>Kim, Sangtae</creatorcontrib><creatorcontrib>Shim, Byonghyo</creatorcontrib><title>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</title><title>IEEE wireless communications</title><description>Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management.</description><subject>5G mobile communication</subject><subject>Antenna arrays</subject><subject>Beamforming</subject><subject>Computer vision</subject><subject>Energy consumption</subject><subject>Millimeter waves</subject><subject>Radio equipment</subject><subject>Reduction</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKtnrwHP2ybZfK23umgttHipegxxN6kp3aQmu4j-erPYy8zw8jAzPADcYjTDGFXzzXs9Q0jMCEEIM3YGJrnKAnEpzse55AUmkl6Cq5T2GRGc8QlotuFbxxaufG8OB7czvocbl6fO9CZC7Vu4NVF_mtj_wjp03eBdo3sXPLQhQr68H9PjMMJvLuW8WLjWtPDB6C4TnfO7a3Bh9SGZm1Ofgtenx239XKxflqt6sS6a_DMtJOFVhSpLJRUCNxVn1HLEGaacSszpBxVMIi0YNlZbLohFDSqNRdYwzBkpp-Duf-8xhq_BpF7twxB9PqmIrEgpGMUyU_N_qokhpWisOkbX6fijMFKjSZVNqmxSnUyWf3hPZL4</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Ahn, Yongjun</creator><creator>Kim, Jinhong</creator><creator>Kim, Seungnyun</creator><creator>Shim, Kyuhong</creator><creator>Kim, Jiyoung</creator><creator>Kim, Sangtae</creator><creator>Shim, Byonghyo</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202310</creationdate><title>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</title><author>Ahn, Yongjun ; Kim, Jinhong ; Kim, Seungnyun ; Shim, Kyuhong ; Kim, Jiyoung ; Kim, Sangtae ; Shim, Byonghyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>Antenna arrays</topic><topic>Beamforming</topic><topic>Computer vision</topic><topic>Energy consumption</topic><topic>Millimeter waves</topic><topic>Radio equipment</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Yongjun</creatorcontrib><creatorcontrib>Kim, Jinhong</creatorcontrib><creatorcontrib>Kim, Seungnyun</creatorcontrib><creatorcontrib>Shim, Kyuhong</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><creatorcontrib>Kim, Sangtae</creatorcontrib><creatorcontrib>Shim, Byonghyo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Yongjun</au><au>Kim, Jinhong</au><au>Kim, Seungnyun</au><au>Shim, Kyuhong</au><au>Kim, Jiyoung</au><au>Kim, Sangtae</au><au>Shim, Byonghyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</atitle><jtitle>IEEE wireless communications</jtitle><date>2023-10</date><risdate>2023</risdate><volume>30</volume><issue>5</issue><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><abstract>Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/MWC.007.2200155</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-1284
ispartof IEEE wireless communications, 2023-10, Vol.30 (5), p.179-186
issn 1536-1284
1558-0687
language eng
recordid cdi_proquest_journals_2892375418
source IEEE Electronic Library (IEL) Journals
subjects 5G mobile communication
Antenna arrays
Beamforming
Computer vision
Energy consumption
Millimeter waves
Radio equipment
Reduction
title Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T18%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Intelligent%20Millimeter%20and%20Terahertz%20Communication%20for%206G:%20Computer%20Vision-Aided%20Beamforming&rft.jtitle=IEEE%20wireless%20communications&rft.au=Ahn,%20Yongjun&rft.date=2023-10&rft.volume=30&rft.issue=5&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=1536-1284&rft.eissn=1558-0687&rft_id=info:doi/10.1109/MWC.007.2200155&rft_dat=%3Cproquest_cross%3E2892375418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892375418&rft_id=info:pmid/&rfr_iscdi=true