Loading…
Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming
Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned...
Saved in:
Published in: | IEEE wireless communications 2023-10, Vol.30 (5), p.179-186 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523 |
---|---|
cites | cdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523 |
container_end_page | 186 |
container_issue | 5 |
container_start_page | 179 |
container_title | IEEE wireless communications |
container_volume | 30 |
creator | Ahn, Yongjun Kim, Jinhong Kim, Seungnyun Shim, Kyuhong Kim, Jiyoung Kim, Sangtae Shim, Byonghyo |
description | Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management. |
doi_str_mv | 10.1109/MWC.007.2200155 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892375418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892375418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKtnrwHP2ybZfK23umgttHipegxxN6kp3aQmu4j-erPYy8zw8jAzPADcYjTDGFXzzXs9Q0jMCEEIM3YGJrnKAnEpzse55AUmkl6Cq5T2GRGc8QlotuFbxxaufG8OB7czvocbl6fO9CZC7Vu4NVF_mtj_wjp03eBdo3sXPLQhQr68H9PjMMJvLuW8WLjWtPDB6C4TnfO7a3Bh9SGZm1Ofgtenx239XKxflqt6sS6a_DMtJOFVhSpLJRUCNxVn1HLEGaacSszpBxVMIi0YNlZbLohFDSqNRdYwzBkpp-Duf-8xhq_BpF7twxB9PqmIrEgpGMUyU_N_qokhpWisOkbX6fijMFKjSZVNqmxSnUyWf3hPZL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892375418</pqid></control><display><type>article</type><title>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ahn, Yongjun ; Kim, Jinhong ; Kim, Seungnyun ; Shim, Kyuhong ; Kim, Jiyoung ; Kim, Sangtae ; Shim, Byonghyo</creator><creatorcontrib>Ahn, Yongjun ; Kim, Jinhong ; Kim, Seungnyun ; Shim, Kyuhong ; Kim, Jiyoung ; Kim, Sangtae ; Shim, Byonghyo</creatorcontrib><description>Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.007.2200155</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>5G mobile communication ; Antenna arrays ; Beamforming ; Computer vision ; Energy consumption ; Millimeter waves ; Radio equipment ; Reduction</subject><ispartof>IEEE wireless communications, 2023-10, Vol.30 (5), p.179-186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</citedby><cites>FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Ahn, Yongjun</creatorcontrib><creatorcontrib>Kim, Jinhong</creatorcontrib><creatorcontrib>Kim, Seungnyun</creatorcontrib><creatorcontrib>Shim, Kyuhong</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><creatorcontrib>Kim, Sangtae</creatorcontrib><creatorcontrib>Shim, Byonghyo</creatorcontrib><title>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</title><title>IEEE wireless communications</title><description>Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management.</description><subject>5G mobile communication</subject><subject>Antenna arrays</subject><subject>Beamforming</subject><subject>Computer vision</subject><subject>Energy consumption</subject><subject>Millimeter waves</subject><subject>Radio equipment</subject><subject>Reduction</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKtnrwHP2ybZfK23umgttHipegxxN6kp3aQmu4j-erPYy8zw8jAzPADcYjTDGFXzzXs9Q0jMCEEIM3YGJrnKAnEpzse55AUmkl6Cq5T2GRGc8QlotuFbxxaufG8OB7czvocbl6fO9CZC7Vu4NVF_mtj_wjp03eBdo3sXPLQhQr68H9PjMMJvLuW8WLjWtPDB6C4TnfO7a3Bh9SGZm1Ofgtenx239XKxflqt6sS6a_DMtJOFVhSpLJRUCNxVn1HLEGaacSszpBxVMIi0YNlZbLohFDSqNRdYwzBkpp-Duf-8xhq_BpF7twxB9PqmIrEgpGMUyU_N_qokhpWisOkbX6fijMFKjSZVNqmxSnUyWf3hPZL4</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Ahn, Yongjun</creator><creator>Kim, Jinhong</creator><creator>Kim, Seungnyun</creator><creator>Shim, Kyuhong</creator><creator>Kim, Jiyoung</creator><creator>Kim, Sangtae</creator><creator>Shim, Byonghyo</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202310</creationdate><title>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</title><author>Ahn, Yongjun ; Kim, Jinhong ; Kim, Seungnyun ; Shim, Kyuhong ; Kim, Jiyoung ; Kim, Sangtae ; Shim, Byonghyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>Antenna arrays</topic><topic>Beamforming</topic><topic>Computer vision</topic><topic>Energy consumption</topic><topic>Millimeter waves</topic><topic>Radio equipment</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Yongjun</creatorcontrib><creatorcontrib>Kim, Jinhong</creatorcontrib><creatorcontrib>Kim, Seungnyun</creatorcontrib><creatorcontrib>Shim, Kyuhong</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><creatorcontrib>Kim, Sangtae</creatorcontrib><creatorcontrib>Shim, Byonghyo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Yongjun</au><au>Kim, Jinhong</au><au>Kim, Seungnyun</au><au>Shim, Kyuhong</au><au>Kim, Jiyoung</au><au>Kim, Sangtae</au><au>Shim, Byonghyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming</atitle><jtitle>IEEE wireless communications</jtitle><date>2023-10</date><risdate>2023</risdate><volume>30</volume><issue>5</issue><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><abstract>Beamforming technique realized by the multipleinput-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without the codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40 percent improvement in the beamforming gain and 40 percent reduction in the beam training overhead over the 5G NR beam management.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/MWC.007.2200155</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1284 |
ispartof | IEEE wireless communications, 2023-10, Vol.30 (5), p.179-186 |
issn | 1536-1284 1558-0687 |
language | eng |
recordid | cdi_proquest_journals_2892375418 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 5G mobile communication Antenna arrays Beamforming Computer vision Energy consumption Millimeter waves Radio equipment Reduction |
title | Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T18%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Intelligent%20Millimeter%20and%20Terahertz%20Communication%20for%206G:%20Computer%20Vision-Aided%20Beamforming&rft.jtitle=IEEE%20wireless%20communications&rft.au=Ahn,%20Yongjun&rft.date=2023-10&rft.volume=30&rft.issue=5&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=1536-1284&rft.eissn=1558-0687&rft_id=info:doi/10.1109/MWC.007.2200155&rft_dat=%3Cproquest_cross%3E2892375418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2204-8269909f484771c9654f606514648164b47580a751efaf672f0c03ef0fe516523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892375418&rft_id=info:pmid/&rfr_iscdi=true |