Loading…
Deep Gradual-Conversion and Cycle Network for Single-View Synthesis
With the popular application of convolutional neural networks in computational intelligence, research on deep learning-based view synthesis has been a hot topic. Although promising performance has been achieved by the existing learning-based view synthesis methods, how to obtain a clearer target vie...
Saved in:
Published in: | IEEE transactions on emerging topics in computational intelligence 2023-12, Vol.7 (6), p.1-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-1e429daa59be51e07adc9be473b30048b1109ad7c9b1cab53273fee0c28bdf883 |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-1e429daa59be51e07adc9be473b30048b1109ad7c9b1cab53273fee0c28bdf883 |
container_end_page | 11 |
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on emerging topics in computational intelligence |
container_volume | 7 |
creator | Lei, Jianjun Liu, Bingzheng Peng, Bo Cao, Xiaochun Huang, Qingming Ling, Nam |
description | With the popular application of convolutional neural networks in computational intelligence, research on deep learning-based view synthesis has been a hot topic. Although promising performance has been achieved by the existing learning-based view synthesis methods, how to obtain a clearer target view in the single-view synthesis task is still a challenging problem. In this paper, we propose a novel deep gradual-conversion and cycle network (DGCC-Net) for single-view synthesis by jointly considering the gradual and cycle synthesis between source and target views. Specifically, a gradual conversion mechanism is designed to synthesize a clearer target view in a gradual manner, which learns the progressive rotation trend from the source to the target view by introducing the intermediate transformation. Based on the synthesized target view, a cycle synthesis mechanism is designed to further promote the learning of single-view synthesis network by mapping the synthesized target back to the source view. By utilizing the proposed gradual conversion and cycle synthesis mechanisms, the whole network achieves a cycle view synthesis mapping between source and target views to obtain a better target view. Experiments on widely used datasets indicate the proposed DGCC-Net exceeds state-of-the-art methods. |
doi_str_mv | 10.1109/TETCI.2023.3272003 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2892375661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10124087</ieee_id><sourcerecordid>2892375661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-1e429daa59be51e07adc9be473b30048b1109ad7c9b1cab53273fee0c28bdf883</originalsourceid><addsrcrecordid>eNpNUEFOwzAQtBBIVNAPIA6WOKes7bh2jihAqVTBoQVxs5xkAykhLnZK1d_j0h562tFqZmdnCLliMGIMstvFwyKfjjhwMRJccQBxQgY8VSzhWr6fHuFzMgxhCQA8k0zIdEDye8QVnXhbrW2b5K77RR8a11HbVTTfli3SZ-w3zn_R2nk6b7qPFpO3Bjd0vu36TwxNuCRntW0DDg_zgrw-xpeektnLZJrfzZKSZ-M-YZjyrLJWZgVKhqBsVUaYKlEIgFQXuzC2UnHJSlvImEXUiFByXVS11uKC3Ozvrrz7WWPozdKtfRctDdcZF0qOxyyy-J5VeheCx9qsfPNt_dYwMDsL89-X2fVlDn1F0fVe1CDikYDxFLQSfzmSZns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892375661</pqid></control><display><type>article</type><title>Deep Gradual-Conversion and Cycle Network for Single-View Synthesis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lei, Jianjun ; Liu, Bingzheng ; Peng, Bo ; Cao, Xiaochun ; Huang, Qingming ; Ling, Nam</creator><creatorcontrib>Lei, Jianjun ; Liu, Bingzheng ; Peng, Bo ; Cao, Xiaochun ; Huang, Qingming ; Ling, Nam</creatorcontrib><description>With the popular application of convolutional neural networks in computational intelligence, research on deep learning-based view synthesis has been a hot topic. Although promising performance has been achieved by the existing learning-based view synthesis methods, how to obtain a clearer target view in the single-view synthesis task is still a challenging problem. In this paper, we propose a novel deep gradual-conversion and cycle network (DGCC-Net) for single-view synthesis by jointly considering the gradual and cycle synthesis between source and target views. Specifically, a gradual conversion mechanism is designed to synthesize a clearer target view in a gradual manner, which learns the progressive rotation trend from the source to the target view by introducing the intermediate transformation. Based on the synthesized target view, a cycle synthesis mechanism is designed to further promote the learning of single-view synthesis network by mapping the synthesized target back to the source view. By utilizing the proposed gradual conversion and cycle synthesis mechanisms, the whole network achieves a cycle view synthesis mapping between source and target views to obtain a better target view. Experiments on widely used datasets indicate the proposed DGCC-Net exceeds state-of-the-art methods.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2023.3272003</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Computational intelligence ; Correlation ; Cycle synthesis mechanism ; Deep learning ; Electronic mail ; Gradual conversion mechanism ; Mapping ; Single-view synthesis ; Synthesis ; Task analysis ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2023-12, Vol.7 (6), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-1e429daa59be51e07adc9be473b30048b1109ad7c9b1cab53273fee0c28bdf883</citedby><cites>FETCH-LOGICAL-c296t-1e429daa59be51e07adc9be473b30048b1109ad7c9b1cab53273fee0c28bdf883</cites><orcidid>0000-0002-6949-4147 ; 0000-0002-6616-453X ; 0000-0001-7542-296X ; 0000-0002-5741-7937 ; 0000-0001-7141-708X ; 0000-0003-3171-7680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10124087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lei, Jianjun</creatorcontrib><creatorcontrib>Liu, Bingzheng</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Cao, Xiaochun</creatorcontrib><creatorcontrib>Huang, Qingming</creatorcontrib><creatorcontrib>Ling, Nam</creatorcontrib><title>Deep Gradual-Conversion and Cycle Network for Single-View Synthesis</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>With the popular application of convolutional neural networks in computational intelligence, research on deep learning-based view synthesis has been a hot topic. Although promising performance has been achieved by the existing learning-based view synthesis methods, how to obtain a clearer target view in the single-view synthesis task is still a challenging problem. In this paper, we propose a novel deep gradual-conversion and cycle network (DGCC-Net) for single-view synthesis by jointly considering the gradual and cycle synthesis between source and target views. Specifically, a gradual conversion mechanism is designed to synthesize a clearer target view in a gradual manner, which learns the progressive rotation trend from the source to the target view by introducing the intermediate transformation. Based on the synthesized target view, a cycle synthesis mechanism is designed to further promote the learning of single-view synthesis network by mapping the synthesized target back to the source view. By utilizing the proposed gradual conversion and cycle synthesis mechanisms, the whole network achieves a cycle view synthesis mapping between source and target views to obtain a better target view. Experiments on widely used datasets indicate the proposed DGCC-Net exceeds state-of-the-art methods.</description><subject>Artificial neural networks</subject><subject>Computational intelligence</subject><subject>Correlation</subject><subject>Cycle synthesis mechanism</subject><subject>Deep learning</subject><subject>Electronic mail</subject><subject>Gradual conversion mechanism</subject><subject>Mapping</subject><subject>Single-view synthesis</subject><subject>Synthesis</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUEFOwzAQtBBIVNAPIA6WOKes7bh2jihAqVTBoQVxs5xkAykhLnZK1d_j0h562tFqZmdnCLliMGIMstvFwyKfjjhwMRJccQBxQgY8VSzhWr6fHuFzMgxhCQA8k0zIdEDye8QVnXhbrW2b5K77RR8a11HbVTTfli3SZ-w3zn_R2nk6b7qPFpO3Bjd0vu36TwxNuCRntW0DDg_zgrw-xpeektnLZJrfzZKSZ-M-YZjyrLJWZgVKhqBsVUaYKlEIgFQXuzC2UnHJSlvImEXUiFByXVS11uKC3Ozvrrz7WWPozdKtfRctDdcZF0qOxyyy-J5VeheCx9qsfPNt_dYwMDsL89-X2fVlDn1F0fVe1CDikYDxFLQSfzmSZns</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lei, Jianjun</creator><creator>Liu, Bingzheng</creator><creator>Peng, Bo</creator><creator>Cao, Xiaochun</creator><creator>Huang, Qingming</creator><creator>Ling, Nam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6949-4147</orcidid><orcidid>https://orcid.org/0000-0002-6616-453X</orcidid><orcidid>https://orcid.org/0000-0001-7542-296X</orcidid><orcidid>https://orcid.org/0000-0002-5741-7937</orcidid><orcidid>https://orcid.org/0000-0001-7141-708X</orcidid><orcidid>https://orcid.org/0000-0003-3171-7680</orcidid></search><sort><creationdate>20231201</creationdate><title>Deep Gradual-Conversion and Cycle Network for Single-View Synthesis</title><author>Lei, Jianjun ; Liu, Bingzheng ; Peng, Bo ; Cao, Xiaochun ; Huang, Qingming ; Ling, Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-1e429daa59be51e07adc9be473b30048b1109ad7c9b1cab53273fee0c28bdf883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Computational intelligence</topic><topic>Correlation</topic><topic>Cycle synthesis mechanism</topic><topic>Deep learning</topic><topic>Electronic mail</topic><topic>Gradual conversion mechanism</topic><topic>Mapping</topic><topic>Single-view synthesis</topic><topic>Synthesis</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Jianjun</creatorcontrib><creatorcontrib>Liu, Bingzheng</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Cao, Xiaochun</creatorcontrib><creatorcontrib>Huang, Qingming</creatorcontrib><creatorcontrib>Ling, Nam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Jianjun</au><au>Liu, Bingzheng</au><au>Peng, Bo</au><au>Cao, Xiaochun</au><au>Huang, Qingming</au><au>Ling, Nam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Gradual-Conversion and Cycle Network for Single-View Synthesis</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>7</volume><issue>6</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>With the popular application of convolutional neural networks in computational intelligence, research on deep learning-based view synthesis has been a hot topic. Although promising performance has been achieved by the existing learning-based view synthesis methods, how to obtain a clearer target view in the single-view synthesis task is still a challenging problem. In this paper, we propose a novel deep gradual-conversion and cycle network (DGCC-Net) for single-view synthesis by jointly considering the gradual and cycle synthesis between source and target views. Specifically, a gradual conversion mechanism is designed to synthesize a clearer target view in a gradual manner, which learns the progressive rotation trend from the source to the target view by introducing the intermediate transformation. Based on the synthesized target view, a cycle synthesis mechanism is designed to further promote the learning of single-view synthesis network by mapping the synthesized target back to the source view. By utilizing the proposed gradual conversion and cycle synthesis mechanisms, the whole network achieves a cycle view synthesis mapping between source and target views to obtain a better target view. Experiments on widely used datasets indicate the proposed DGCC-Net exceeds state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2023.3272003</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6949-4147</orcidid><orcidid>https://orcid.org/0000-0002-6616-453X</orcidid><orcidid>https://orcid.org/0000-0001-7542-296X</orcidid><orcidid>https://orcid.org/0000-0002-5741-7937</orcidid><orcidid>https://orcid.org/0000-0001-7141-708X</orcidid><orcidid>https://orcid.org/0000-0003-3171-7680</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2471-285X |
ispartof | IEEE transactions on emerging topics in computational intelligence, 2023-12, Vol.7 (6), p.1-11 |
issn | 2471-285X 2471-285X |
language | eng |
recordid | cdi_proquest_journals_2892375661 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Computational intelligence Correlation Cycle synthesis mechanism Deep learning Electronic mail Gradual conversion mechanism Mapping Single-view synthesis Synthesis Task analysis Three-dimensional displays Visualization |
title | Deep Gradual-Conversion and Cycle Network for Single-View Synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Gradual-Conversion%20and%20Cycle%20Network%20for%20Single-View%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Lei,%20Jianjun&rft.date=2023-12-01&rft.volume=7&rft.issue=6&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2023.3272003&rft_dat=%3Cproquest_ieee_%3E2892375661%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-1e429daa59be51e07adc9be473b30048b1109ad7c9b1cab53273fee0c28bdf883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892375661&rft_id=info:pmid/&rft_ieee_id=10124087&rfr_iscdi=true |