Loading…
Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films
Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a...
Saved in:
Published in: | Journal of applied physics 2023-11, Vol.134 (20) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 134 |
creator | Groppi, C. Maspero, F. Asa, M. Pavese, G. Rinaldi, C. Albisetti, E. Badillo-Avila, M. Bertacco, R. |
description | Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (>600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains. |
doi_str_mv | 10.1063/5.0171349 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2892381397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892381397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNZ-bzFGKVbHUg3oO6W6iKdvNmqSg_96V9uxhmMvDy8yL0CUlM0pqfitnhCrKBRyhCSUaKiUlOUYTQhitNCg4RWc5bwihVHOYoNXrEPtiexd3GQ-2FJd6HD2OqXzGj9jbDnuXUnSda0oKDW7j1oY-49BjN4Riv8NInlcr7EO3zefoxNsuu4vDnqL3xf3b_LFavjw8ze-WVcO0KpXwa-BESPAEgDMOklrP21oR0JbVkgvBxpGydQqEZV75NaWScVe3rKGCT9HVPndI8WvncjGbuEvjtdkwDYxrykGN6nqvmhRzTs6bIYWtTT-GEvNXl5HmUNdob_Y2N-NXJcT-H_wLIjFodw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892381397</pqid></control><display><type>article</type><title>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Groppi, C. ; Maspero, F. ; Asa, M. ; Pavese, G. ; Rinaldi, C. ; Albisetti, E. ; Badillo-Avila, M. ; Bertacco, R.</creator><creatorcontrib>Groppi, C. ; Maspero, F. ; Asa, M. ; Pavese, G. ; Rinaldi, C. ; Albisetti, E. ; Badillo-Avila, M. ; Bertacco, R.</creatorcontrib><description>Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (>600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0171349</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Compressive properties ; Cubic lattice ; Epitaxial growth ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; High temperature ; Lead free ; Leakage current ; Microscopy ; Niobium ; Piezoelectricity ; Plane stress ; Preferred orientation ; Strain relaxation ; Strontium titanates ; Substrates ; Thin films</subject><ispartof>Journal of applied physics, 2023-11, Vol.134 (20)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143</cites><orcidid>0000-0002-3028-8370 ; 0000-0001-8220-5509 ; 0000-0002-2247-9222 ; 0000-0002-8134-0482 ; 0000-0002-8109-9166 ; 0000-0001-6930-211X ; 0000-0002-7989-0784 ; 0000-0001-7562-6014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Groppi, C.</creatorcontrib><creatorcontrib>Maspero, F.</creatorcontrib><creatorcontrib>Asa, M.</creatorcontrib><creatorcontrib>Pavese, G.</creatorcontrib><creatorcontrib>Rinaldi, C.</creatorcontrib><creatorcontrib>Albisetti, E.</creatorcontrib><creatorcontrib>Badillo-Avila, M.</creatorcontrib><creatorcontrib>Bertacco, R.</creatorcontrib><title>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</title><title>Journal of applied physics</title><description>Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (>600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains.</description><subject>Applied physics</subject><subject>Compressive properties</subject><subject>Cubic lattice</subject><subject>Epitaxial growth</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>High temperature</subject><subject>Lead free</subject><subject>Leakage current</subject><subject>Microscopy</subject><subject>Niobium</subject><subject>Piezoelectricity</subject><subject>Plane stress</subject><subject>Preferred orientation</subject><subject>Strain relaxation</subject><subject>Strontium titanates</subject><subject>Substrates</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNZ-bzFGKVbHUg3oO6W6iKdvNmqSg_96V9uxhmMvDy8yL0CUlM0pqfitnhCrKBRyhCSUaKiUlOUYTQhitNCg4RWc5bwihVHOYoNXrEPtiexd3GQ-2FJd6HD2OqXzGj9jbDnuXUnSda0oKDW7j1oY-49BjN4Riv8NInlcr7EO3zefoxNsuu4vDnqL3xf3b_LFavjw8ze-WVcO0KpXwa-BESPAEgDMOklrP21oR0JbVkgvBxpGydQqEZV75NaWScVe3rKGCT9HVPndI8WvncjGbuEvjtdkwDYxrykGN6nqvmhRzTs6bIYWtTT-GEvNXl5HmUNdob_Y2N-NXJcT-H_wLIjFodw</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Groppi, C.</creator><creator>Maspero, F.</creator><creator>Asa, M.</creator><creator>Pavese, G.</creator><creator>Rinaldi, C.</creator><creator>Albisetti, E.</creator><creator>Badillo-Avila, M.</creator><creator>Bertacco, R.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3028-8370</orcidid><orcidid>https://orcid.org/0000-0001-8220-5509</orcidid><orcidid>https://orcid.org/0000-0002-2247-9222</orcidid><orcidid>https://orcid.org/0000-0002-8134-0482</orcidid><orcidid>https://orcid.org/0000-0002-8109-9166</orcidid><orcidid>https://orcid.org/0000-0001-6930-211X</orcidid><orcidid>https://orcid.org/0000-0002-7989-0784</orcidid><orcidid>https://orcid.org/0000-0001-7562-6014</orcidid></search><sort><creationdate>20231128</creationdate><title>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</title><author>Groppi, C. ; Maspero, F. ; Asa, M. ; Pavese, G. ; Rinaldi, C. ; Albisetti, E. ; Badillo-Avila, M. ; Bertacco, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Compressive properties</topic><topic>Cubic lattice</topic><topic>Epitaxial growth</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>High temperature</topic><topic>Lead free</topic><topic>Leakage current</topic><topic>Microscopy</topic><topic>Niobium</topic><topic>Piezoelectricity</topic><topic>Plane stress</topic><topic>Preferred orientation</topic><topic>Strain relaxation</topic><topic>Strontium titanates</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groppi, C.</creatorcontrib><creatorcontrib>Maspero, F.</creatorcontrib><creatorcontrib>Asa, M.</creatorcontrib><creatorcontrib>Pavese, G.</creatorcontrib><creatorcontrib>Rinaldi, C.</creatorcontrib><creatorcontrib>Albisetti, E.</creatorcontrib><creatorcontrib>Badillo-Avila, M.</creatorcontrib><creatorcontrib>Bertacco, R.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groppi, C.</au><au>Maspero, F.</au><au>Asa, M.</au><au>Pavese, G.</au><au>Rinaldi, C.</au><au>Albisetti, E.</au><au>Badillo-Avila, M.</au><au>Bertacco, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</atitle><jtitle>Journal of applied physics</jtitle><date>2023-11-28</date><risdate>2023</risdate><volume>134</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (>600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0171349</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3028-8370</orcidid><orcidid>https://orcid.org/0000-0001-8220-5509</orcidid><orcidid>https://orcid.org/0000-0002-2247-9222</orcidid><orcidid>https://orcid.org/0000-0002-8134-0482</orcidid><orcidid>https://orcid.org/0000-0002-8109-9166</orcidid><orcidid>https://orcid.org/0000-0001-6930-211X</orcidid><orcidid>https://orcid.org/0000-0002-7989-0784</orcidid><orcidid>https://orcid.org/0000-0001-7562-6014</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-11, Vol.134 (20) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2892381397 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Compressive properties Cubic lattice Epitaxial growth Ferroelectric domains Ferroelectric materials Ferroelectricity High temperature Lead free Leakage current Microscopy Niobium Piezoelectricity Plane stress Preferred orientation Strain relaxation Strontium titanates Substrates Thin films |
title | Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20pattern%20of%20orthogonal%20ferroelectric%20domains%20in%20epitaxial%20KNN%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Groppi,%20C.&rft.date=2023-11-28&rft.volume=134&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0171349&rft_dat=%3Cproquest_scita%3E2892381397%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892381397&rft_id=info:pmid/&rfr_iscdi=true |