Loading…

Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films

Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-11, Vol.134 (20)
Main Authors: Groppi, C., Maspero, F., Asa, M., Pavese, G., Rinaldi, C., Albisetti, E., Badillo-Avila, M., Bertacco, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143
container_end_page
container_issue 20
container_start_page
container_title Journal of applied physics
container_volume 134
creator Groppi, C.
Maspero, F.
Asa, M.
Pavese, G.
Rinaldi, C.
Albisetti, E.
Badillo-Avila, M.
Bertacco, R.
description Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (>600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains.
doi_str_mv 10.1063/5.0171349
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2892381397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892381397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNZ-bzFGKVbHUg3oO6W6iKdvNmqSg_96V9uxhmMvDy8yL0CUlM0pqfitnhCrKBRyhCSUaKiUlOUYTQhitNCg4RWc5bwihVHOYoNXrEPtiexd3GQ-2FJd6HD2OqXzGj9jbDnuXUnSda0oKDW7j1oY-49BjN4Riv8NInlcr7EO3zefoxNsuu4vDnqL3xf3b_LFavjw8ze-WVcO0KpXwa-BESPAEgDMOklrP21oR0JbVkgvBxpGydQqEZV75NaWScVe3rKGCT9HVPndI8WvncjGbuEvjtdkwDYxrykGN6nqvmhRzTs6bIYWtTT-GEvNXl5HmUNdob_Y2N-NXJcT-H_wLIjFodw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892381397</pqid></control><display><type>article</type><title>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Groppi, C. ; Maspero, F. ; Asa, M. ; Pavese, G. ; Rinaldi, C. ; Albisetti, E. ; Badillo-Avila, M. ; Bertacco, R.</creator><creatorcontrib>Groppi, C. ; Maspero, F. ; Asa, M. ; Pavese, G. ; Rinaldi, C. ; Albisetti, E. ; Badillo-Avila, M. ; Bertacco, R.</creatorcontrib><description>Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (&gt;600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0171349</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Compressive properties ; Cubic lattice ; Epitaxial growth ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; High temperature ; Lead free ; Leakage current ; Microscopy ; Niobium ; Piezoelectricity ; Plane stress ; Preferred orientation ; Strain relaxation ; Strontium titanates ; Substrates ; Thin films</subject><ispartof>Journal of applied physics, 2023-11, Vol.134 (20)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143</cites><orcidid>0000-0002-3028-8370 ; 0000-0001-8220-5509 ; 0000-0002-2247-9222 ; 0000-0002-8134-0482 ; 0000-0002-8109-9166 ; 0000-0001-6930-211X ; 0000-0002-7989-0784 ; 0000-0001-7562-6014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Groppi, C.</creatorcontrib><creatorcontrib>Maspero, F.</creatorcontrib><creatorcontrib>Asa, M.</creatorcontrib><creatorcontrib>Pavese, G.</creatorcontrib><creatorcontrib>Rinaldi, C.</creatorcontrib><creatorcontrib>Albisetti, E.</creatorcontrib><creatorcontrib>Badillo-Avila, M.</creatorcontrib><creatorcontrib>Bertacco, R.</creatorcontrib><title>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</title><title>Journal of applied physics</title><description>Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (&gt;600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains.</description><subject>Applied physics</subject><subject>Compressive properties</subject><subject>Cubic lattice</subject><subject>Epitaxial growth</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>High temperature</subject><subject>Lead free</subject><subject>Leakage current</subject><subject>Microscopy</subject><subject>Niobium</subject><subject>Piezoelectricity</subject><subject>Plane stress</subject><subject>Preferred orientation</subject><subject>Strain relaxation</subject><subject>Strontium titanates</subject><subject>Substrates</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNZ-bzFGKVbHUg3oO6W6iKdvNmqSg_96V9uxhmMvDy8yL0CUlM0pqfitnhCrKBRyhCSUaKiUlOUYTQhitNCg4RWc5bwihVHOYoNXrEPtiexd3GQ-2FJd6HD2OqXzGj9jbDnuXUnSda0oKDW7j1oY-49BjN4Riv8NInlcr7EO3zefoxNsuu4vDnqL3xf3b_LFavjw8ze-WVcO0KpXwa-BESPAEgDMOklrP21oR0JbVkgvBxpGydQqEZV75NaWScVe3rKGCT9HVPndI8WvncjGbuEvjtdkwDYxrykGN6nqvmhRzTs6bIYWtTT-GEvNXl5HmUNdob_Y2N-NXJcT-H_wLIjFodw</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Groppi, C.</creator><creator>Maspero, F.</creator><creator>Asa, M.</creator><creator>Pavese, G.</creator><creator>Rinaldi, C.</creator><creator>Albisetti, E.</creator><creator>Badillo-Avila, M.</creator><creator>Bertacco, R.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3028-8370</orcidid><orcidid>https://orcid.org/0000-0001-8220-5509</orcidid><orcidid>https://orcid.org/0000-0002-2247-9222</orcidid><orcidid>https://orcid.org/0000-0002-8134-0482</orcidid><orcidid>https://orcid.org/0000-0002-8109-9166</orcidid><orcidid>https://orcid.org/0000-0001-6930-211X</orcidid><orcidid>https://orcid.org/0000-0002-7989-0784</orcidid><orcidid>https://orcid.org/0000-0001-7562-6014</orcidid></search><sort><creationdate>20231128</creationdate><title>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</title><author>Groppi, C. ; Maspero, F. ; Asa, M. ; Pavese, G. ; Rinaldi, C. ; Albisetti, E. ; Badillo-Avila, M. ; Bertacco, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Compressive properties</topic><topic>Cubic lattice</topic><topic>Epitaxial growth</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>High temperature</topic><topic>Lead free</topic><topic>Leakage current</topic><topic>Microscopy</topic><topic>Niobium</topic><topic>Piezoelectricity</topic><topic>Plane stress</topic><topic>Preferred orientation</topic><topic>Strain relaxation</topic><topic>Strontium titanates</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groppi, C.</creatorcontrib><creatorcontrib>Maspero, F.</creatorcontrib><creatorcontrib>Asa, M.</creatorcontrib><creatorcontrib>Pavese, G.</creatorcontrib><creatorcontrib>Rinaldi, C.</creatorcontrib><creatorcontrib>Albisetti, E.</creatorcontrib><creatorcontrib>Badillo-Avila, M.</creatorcontrib><creatorcontrib>Bertacco, R.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groppi, C.</au><au>Maspero, F.</au><au>Asa, M.</au><au>Pavese, G.</au><au>Rinaldi, C.</au><au>Albisetti, E.</au><au>Badillo-Avila, M.</au><au>Bertacco, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films</atitle><jtitle>Journal of applied physics</jtitle><date>2023-11-28</date><risdate>2023</risdate><volume>134</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Lead-free piezoelectric (K, Na)NbO3 (KNN) is considered one of the promising candidates for the replacement of Pb(ZrxTi1−x)O3. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (&gt;600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO3. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0171349</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3028-8370</orcidid><orcidid>https://orcid.org/0000-0001-8220-5509</orcidid><orcidid>https://orcid.org/0000-0002-2247-9222</orcidid><orcidid>https://orcid.org/0000-0002-8134-0482</orcidid><orcidid>https://orcid.org/0000-0002-8109-9166</orcidid><orcidid>https://orcid.org/0000-0001-6930-211X</orcidid><orcidid>https://orcid.org/0000-0002-7989-0784</orcidid><orcidid>https://orcid.org/0000-0001-7562-6014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-11, Vol.134 (20)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2892381397
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Compressive properties
Cubic lattice
Epitaxial growth
Ferroelectric domains
Ferroelectric materials
Ferroelectricity
High temperature
Lead free
Leakage current
Microscopy
Niobium
Piezoelectricity
Plane stress
Preferred orientation
Strain relaxation
Strontium titanates
Substrates
Thin films
title Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20pattern%20of%20orthogonal%20ferroelectric%20domains%20in%20epitaxial%20KNN%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Groppi,%20C.&rft.date=2023-11-28&rft.volume=134&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0171349&rft_dat=%3Cproquest_scita%3E2892381397%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-4fb930459f099323951af3d67098a265344234455de794a2f7fb11523e6d2c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892381397&rft_id=info:pmid/&rfr_iscdi=true