Loading…
Towards a more inductive world for drug repurposing approaches
Drug-target interaction (DTI) prediction is a challenging, albeit essential task in drug repurposing. Learning on graph models have drawn special attention as they can significantly reduce drug repurposing costs and time commitment. However, many current approaches require high-demanding additional...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | de la Fuente, Jesus Serrano, Guillermo Veleiro, Uxía Casals, Mikel Vera, Laura Pizurica, Marija Pineda-Lucena, Antonio Ochoa, Idoia Silve Vicent Gevaert, Olivier Hernaez, Mikel |
description | Drug-target interaction (DTI) prediction is a challenging, albeit essential task in drug repurposing. Learning on graph models have drawn special attention as they can significantly reduce drug repurposing costs and time commitment. However, many current approaches require high-demanding additional information besides DTIs that complicates their evaluation process and usability. Additionally, structural differences in the learning architecture of current models hinder their fair benchmarking. In this work, we first perform an in-depth evaluation of current DTI datasets and prediction models through a robust benchmarking process, and show that DTI prediction methods based on transductive models lack generalization and lead to inflated performance when evaluated as previously done in the literature, hence not being suited for drug repurposing approaches. We then propose a novel biologically-driven strategy for negative edge subsampling and show through in vitro validation that newly discovered interactions are indeed true. We envision this work as the underpinning for future fair benchmarking and robust model design. All generated resources and tools are publicly available as a python package. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2892395849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892395849</sourcerecordid><originalsourceid>FETCH-proquest_journals_28923958493</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6CzarpZcuUfQA3mVpV1PM2WbcfP089ACd_sP_rVSEWh-SIkPcqFikT9MUjyfMcx2pc0WzYStg4EXsoBtteEzdx8FMPFhoiMFyaIGdD-xJurEF4z2TeTyd7NS6MYO4-Net2t-u1eWeLOAdnEx1T4HHZdVYlKjLvMhK_Z_6AvdKOQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892395849</pqid></control><display><type>article</type><title>Towards a more inductive world for drug repurposing approaches</title><source>Publicly Available Content (ProQuest)</source><creator>de la Fuente, Jesus ; Serrano, Guillermo ; Veleiro, Uxía ; Casals, Mikel ; Vera, Laura ; Pizurica, Marija ; Pineda-Lucena, Antonio ; Ochoa, Idoia ; Silve Vicent ; Gevaert, Olivier ; Hernaez, Mikel</creator><creatorcontrib>de la Fuente, Jesus ; Serrano, Guillermo ; Veleiro, Uxía ; Casals, Mikel ; Vera, Laura ; Pizurica, Marija ; Pineda-Lucena, Antonio ; Ochoa, Idoia ; Silve Vicent ; Gevaert, Olivier ; Hernaez, Mikel</creatorcontrib><description>Drug-target interaction (DTI) prediction is a challenging, albeit essential task in drug repurposing. Learning on graph models have drawn special attention as they can significantly reduce drug repurposing costs and time commitment. However, many current approaches require high-demanding additional information besides DTIs that complicates their evaluation process and usability. Additionally, structural differences in the learning architecture of current models hinder their fair benchmarking. In this work, we first perform an in-depth evaluation of current DTI datasets and prediction models through a robust benchmarking process, and show that DTI prediction methods based on transductive models lack generalization and lead to inflated performance when evaluated as previously done in the literature, hence not being suited for drug repurposing approaches. We then propose a novel biologically-driven strategy for negative edge subsampling and show through in vitro validation that newly discovered interactions are indeed true. We envision this work as the underpinning for future fair benchmarking and robust model design. All generated resources and tools are publicly available as a python package.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Learning ; Performance evaluation ; Prediction models ; Robustness</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2892395849?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>de la Fuente, Jesus</creatorcontrib><creatorcontrib>Serrano, Guillermo</creatorcontrib><creatorcontrib>Veleiro, Uxía</creatorcontrib><creatorcontrib>Casals, Mikel</creatorcontrib><creatorcontrib>Vera, Laura</creatorcontrib><creatorcontrib>Pizurica, Marija</creatorcontrib><creatorcontrib>Pineda-Lucena, Antonio</creatorcontrib><creatorcontrib>Ochoa, Idoia</creatorcontrib><creatorcontrib>Silve Vicent</creatorcontrib><creatorcontrib>Gevaert, Olivier</creatorcontrib><creatorcontrib>Hernaez, Mikel</creatorcontrib><title>Towards a more inductive world for drug repurposing approaches</title><title>arXiv.org</title><description>Drug-target interaction (DTI) prediction is a challenging, albeit essential task in drug repurposing. Learning on graph models have drawn special attention as they can significantly reduce drug repurposing costs and time commitment. However, many current approaches require high-demanding additional information besides DTIs that complicates their evaluation process and usability. Additionally, structural differences in the learning architecture of current models hinder their fair benchmarking. In this work, we first perform an in-depth evaluation of current DTI datasets and prediction models through a robust benchmarking process, and show that DTI prediction methods based on transductive models lack generalization and lead to inflated performance when evaluated as previously done in the literature, hence not being suited for drug repurposing approaches. We then propose a novel biologically-driven strategy for negative edge subsampling and show through in vitro validation that newly discovered interactions are indeed true. We envision this work as the underpinning for future fair benchmarking and robust model design. All generated resources and tools are publicly available as a python package.</description><subject>Benchmarks</subject><subject>Learning</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6CzarpZcuUfQA3mVpV1PM2WbcfP089ACd_sP_rVSEWh-SIkPcqFikT9MUjyfMcx2pc0WzYStg4EXsoBtteEzdx8FMPFhoiMFyaIGdD-xJurEF4z2TeTyd7NS6MYO4-Net2t-u1eWeLOAdnEx1T4HHZdVYlKjLvMhK_Z_6AvdKOQE</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>de la Fuente, Jesus</creator><creator>Serrano, Guillermo</creator><creator>Veleiro, Uxía</creator><creator>Casals, Mikel</creator><creator>Vera, Laura</creator><creator>Pizurica, Marija</creator><creator>Pineda-Lucena, Antonio</creator><creator>Ochoa, Idoia</creator><creator>Silve Vicent</creator><creator>Gevaert, Olivier</creator><creator>Hernaez, Mikel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231124</creationdate><title>Towards a more inductive world for drug repurposing approaches</title><author>de la Fuente, Jesus ; Serrano, Guillermo ; Veleiro, Uxía ; Casals, Mikel ; Vera, Laura ; Pizurica, Marija ; Pineda-Lucena, Antonio ; Ochoa, Idoia ; Silve Vicent ; Gevaert, Olivier ; Hernaez, Mikel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28923958493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarks</topic><topic>Learning</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>de la Fuente, Jesus</creatorcontrib><creatorcontrib>Serrano, Guillermo</creatorcontrib><creatorcontrib>Veleiro, Uxía</creatorcontrib><creatorcontrib>Casals, Mikel</creatorcontrib><creatorcontrib>Vera, Laura</creatorcontrib><creatorcontrib>Pizurica, Marija</creatorcontrib><creatorcontrib>Pineda-Lucena, Antonio</creatorcontrib><creatorcontrib>Ochoa, Idoia</creatorcontrib><creatorcontrib>Silve Vicent</creatorcontrib><creatorcontrib>Gevaert, Olivier</creatorcontrib><creatorcontrib>Hernaez, Mikel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Fuente, Jesus</au><au>Serrano, Guillermo</au><au>Veleiro, Uxía</au><au>Casals, Mikel</au><au>Vera, Laura</au><au>Pizurica, Marija</au><au>Pineda-Lucena, Antonio</au><au>Ochoa, Idoia</au><au>Silve Vicent</au><au>Gevaert, Olivier</au><au>Hernaez, Mikel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards a more inductive world for drug repurposing approaches</atitle><jtitle>arXiv.org</jtitle><date>2023-11-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Drug-target interaction (DTI) prediction is a challenging, albeit essential task in drug repurposing. Learning on graph models have drawn special attention as they can significantly reduce drug repurposing costs and time commitment. However, many current approaches require high-demanding additional information besides DTIs that complicates their evaluation process and usability. Additionally, structural differences in the learning architecture of current models hinder their fair benchmarking. In this work, we first perform an in-depth evaluation of current DTI datasets and prediction models through a robust benchmarking process, and show that DTI prediction methods based on transductive models lack generalization and lead to inflated performance when evaluated as previously done in the literature, hence not being suited for drug repurposing approaches. We then propose a novel biologically-driven strategy for negative edge subsampling and show through in vitro validation that newly discovered interactions are indeed true. We envision this work as the underpinning for future fair benchmarking and robust model design. All generated resources and tools are publicly available as a python package.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2892395849 |
source | Publicly Available Content (ProQuest) |
subjects | Benchmarks Learning Performance evaluation Prediction models Robustness |
title | Towards a more inductive world for drug repurposing approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20a%20more%20inductive%20world%20for%20drug%20repurposing%20approaches&rft.jtitle=arXiv.org&rft.au=de%20la%20Fuente,%20Jesus&rft.date=2023-11-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2892395849%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28923958493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892395849&rft_id=info:pmid/&rfr_iscdi=true |