Loading…
The product of split and annihilator dominance of fuzzy graphs
The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2821 |
creator | Aparna, P. Rao, K. V. Suryanarayana Reddy, E. Keshava |
description | The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs. |
doi_str_mv | 10.1063/5.0159473 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2893952507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893952507</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-f5bc79600bbfb405b355ab309f7a27718809bf23820e9c961c5f6f26aef744cb3</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm6RJmosgw18w8DLBW0jSxmZ0bU3Sw_bX27EdHu_y4b3HQ-gewxIDp09sCZjJUtALlGHGcCE45pcoA5BlQUr6c41uYtwCEClElaHnTdvkYxjqyaZ8cHkcO59y3dezet_6Tqch5PWw873ubXNE3HQ47PPfoMc23qIrp7vY3J19gb7fXjerj2L99f65elkXI6Y0FY4ZKyQHMMaZEpihjGlDQTqhiRC4qkAaR2hFoJFWcmyZ445w3ThRltbQBXo45c5T_6YmJrUdptDPlYpUkkpGGIiZejxR0fqkkx96NQa_02GvMKjjP4qp8z_0H-d9VqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2893952507</pqid></control><display><type>conference_proceeding</type><title>The product of split and annihilator dominance of fuzzy graphs</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Aparna, P. ; Rao, K. V. Suryanarayana ; Reddy, E. Keshava</creator><contributor>Rajak, Upendra ; Dasore, Abhishek ; Panchal, Manoj ; RamaKrishna, Konijeti ; Naik, Bukke Kiran</contributor><creatorcontrib>Aparna, P. ; Rao, K. V. Suryanarayana ; Reddy, E. Keshava ; Rajak, Upendra ; Dasore, Abhishek ; Panchal, Manoj ; RamaKrishna, Konijeti ; Naik, Bukke Kiran</creatorcontrib><description>The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0159473</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Fuzzy sets ; Graphs</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2821 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Rajak, Upendra</contributor><contributor>Dasore, Abhishek</contributor><contributor>Panchal, Manoj</contributor><contributor>RamaKrishna, Konijeti</contributor><contributor>Naik, Bukke Kiran</contributor><creatorcontrib>Aparna, P.</creatorcontrib><creatorcontrib>Rao, K. V. Suryanarayana</creatorcontrib><creatorcontrib>Reddy, E. Keshava</creatorcontrib><title>The product of split and annihilator dominance of fuzzy graphs</title><title>AIP Conference Proceedings</title><description>The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs.</description><subject>Fuzzy sets</subject><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm6RJmosgw18w8DLBW0jSxmZ0bU3Sw_bX27EdHu_y4b3HQ-gewxIDp09sCZjJUtALlGHGcCE45pcoA5BlQUr6c41uYtwCEClElaHnTdvkYxjqyaZ8cHkcO59y3dezet_6Tqch5PWw873ubXNE3HQ47PPfoMc23qIrp7vY3J19gb7fXjerj2L99f65elkXI6Y0FY4ZKyQHMMaZEpihjGlDQTqhiRC4qkAaR2hFoJFWcmyZ445w3ThRltbQBXo45c5T_6YmJrUdptDPlYpUkkpGGIiZejxR0fqkkx96NQa_02GvMKjjP4qp8z_0H-d9VqM</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Aparna, P.</creator><creator>Rao, K. V. Suryanarayana</creator><creator>Reddy, E. Keshava</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231121</creationdate><title>The product of split and annihilator dominance of fuzzy graphs</title><author>Aparna, P. ; Rao, K. V. Suryanarayana ; Reddy, E. Keshava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-f5bc79600bbfb405b355ab309f7a27718809bf23820e9c961c5f6f26aef744cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fuzzy sets</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aparna, P.</creatorcontrib><creatorcontrib>Rao, K. V. Suryanarayana</creatorcontrib><creatorcontrib>Reddy, E. Keshava</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aparna, P.</au><au>Rao, K. V. Suryanarayana</au><au>Reddy, E. Keshava</au><au>Rajak, Upendra</au><au>Dasore, Abhishek</au><au>Panchal, Manoj</au><au>RamaKrishna, Konijeti</au><au>Naik, Bukke Kiran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The product of split and annihilator dominance of fuzzy graphs</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-11-21</date><risdate>2023</risdate><volume>2821</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0159473</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2821 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2893952507 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Fuzzy sets Graphs |
title | The product of split and annihilator dominance of fuzzy graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20product%20of%20split%20and%20annihilator%20dominance%20of%20fuzzy%20graphs&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Aparna,%20P.&rft.date=2023-11-21&rft.volume=2821&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0159473&rft_dat=%3Cproquest_scita%3E2893952507%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-f5bc79600bbfb405b355ab309f7a27718809bf23820e9c961c5f6f26aef744cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893952507&rft_id=info:pmid/&rfr_iscdi=true |