Loading…

The product of split and annihilator dominance of fuzzy graphs

The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on...

Full description

Saved in:
Bibliographic Details
Main Authors: Aparna, P., Rao, K. V. Suryanarayana, Reddy, E. Keshava
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2821
creator Aparna, P.
Rao, K. V. Suryanarayana
Reddy, E. Keshava
description The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs.
doi_str_mv 10.1063/5.0159473
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2893952507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893952507</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-f5bc79600bbfb405b355ab309f7a27718809bf23820e9c961c5f6f26aef744cb3</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm6RJmosgw18w8DLBW0jSxmZ0bU3Sw_bX27EdHu_y4b3HQ-gewxIDp09sCZjJUtALlGHGcCE45pcoA5BlQUr6c41uYtwCEClElaHnTdvkYxjqyaZ8cHkcO59y3dezet_6Tqch5PWw873ubXNE3HQ47PPfoMc23qIrp7vY3J19gb7fXjerj2L99f65elkXI6Y0FY4ZKyQHMMaZEpihjGlDQTqhiRC4qkAaR2hFoJFWcmyZ445w3ThRltbQBXo45c5T_6YmJrUdptDPlYpUkkpGGIiZejxR0fqkkx96NQa_02GvMKjjP4qp8z_0H-d9VqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2893952507</pqid></control><display><type>conference_proceeding</type><title>The product of split and annihilator dominance of fuzzy graphs</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Aparna, P. ; Rao, K. V. Suryanarayana ; Reddy, E. Keshava</creator><contributor>Rajak, Upendra ; Dasore, Abhishek ; Panchal, Manoj ; RamaKrishna, Konijeti ; Naik, Bukke Kiran</contributor><creatorcontrib>Aparna, P. ; Rao, K. V. Suryanarayana ; Reddy, E. Keshava ; Rajak, Upendra ; Dasore, Abhishek ; Panchal, Manoj ; RamaKrishna, Konijeti ; Naik, Bukke Kiran</creatorcontrib><description>The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0159473</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Fuzzy sets ; Graphs</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2821 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Rajak, Upendra</contributor><contributor>Dasore, Abhishek</contributor><contributor>Panchal, Manoj</contributor><contributor>RamaKrishna, Konijeti</contributor><contributor>Naik, Bukke Kiran</contributor><creatorcontrib>Aparna, P.</creatorcontrib><creatorcontrib>Rao, K. V. Suryanarayana</creatorcontrib><creatorcontrib>Reddy, E. Keshava</creatorcontrib><title>The product of split and annihilator dominance of fuzzy graphs</title><title>AIP Conference Proceedings</title><description>The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs.</description><subject>Fuzzy sets</subject><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm6RJmosgw18w8DLBW0jSxmZ0bU3Sw_bX27EdHu_y4b3HQ-gewxIDp09sCZjJUtALlGHGcCE45pcoA5BlQUr6c41uYtwCEClElaHnTdvkYxjqyaZ8cHkcO59y3dezet_6Tqch5PWw873ubXNE3HQ47PPfoMc23qIrp7vY3J19gb7fXjerj2L99f65elkXI6Y0FY4ZKyQHMMaZEpihjGlDQTqhiRC4qkAaR2hFoJFWcmyZ445w3ThRltbQBXo45c5T_6YmJrUdptDPlYpUkkpGGIiZejxR0fqkkx96NQa_02GvMKjjP4qp8z_0H-d9VqM</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Aparna, P.</creator><creator>Rao, K. V. Suryanarayana</creator><creator>Reddy, E. Keshava</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231121</creationdate><title>The product of split and annihilator dominance of fuzzy graphs</title><author>Aparna, P. ; Rao, K. V. Suryanarayana ; Reddy, E. Keshava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-f5bc79600bbfb405b355ab309f7a27718809bf23820e9c961c5f6f26aef744cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fuzzy sets</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aparna, P.</creatorcontrib><creatorcontrib>Rao, K. V. Suryanarayana</creatorcontrib><creatorcontrib>Reddy, E. Keshava</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aparna, P.</au><au>Rao, K. V. Suryanarayana</au><au>Reddy, E. Keshava</au><au>Rajak, Upendra</au><au>Dasore, Abhishek</au><au>Panchal, Manoj</au><au>RamaKrishna, Konijeti</au><au>Naik, Bukke Kiran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The product of split and annihilator dominance of fuzzy graphs</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-11-21</date><risdate>2023</risdate><volume>2821</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The theory of Split and Annihilator Domination of Fuzzy Graph Products with significant results is the subject of this article. Strong fuzzy graph products and Kronecker fuzzy graph products can be used to create a fuzzy graph from two provided fuzzy graphs. This research examines a few findings on split and annihilator dominating sets of fuzzy graph products, as well as the relationship between γs (G,H), γa (G,H), β(G, H) and other known products of G and H parameters. Determine the degree at each vertex in the newly constructed fuzzy graphs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0159473</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2821 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2893952507
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Fuzzy sets
Graphs
title The product of split and annihilator dominance of fuzzy graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20product%20of%20split%20and%20annihilator%20dominance%20of%20fuzzy%20graphs&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Aparna,%20P.&rft.date=2023-11-21&rft.volume=2821&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0159473&rft_dat=%3Cproquest_scita%3E2893952507%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-f5bc79600bbfb405b355ab309f7a27718809bf23820e9c961c5f6f26aef744cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893952507&rft_id=info:pmid/&rfr_iscdi=true