Loading…

Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles

Computational fluid dynamics-discrete element method is frequently used for modeling particulate flows due to its high efficiency and satisfactory accuracy. The particle volume fraction is a crucial parameter that significantly affects the computation accuracy. It may be extremely large when the par...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-11, Vol.35 (11)
Main Authors: Zhang, Yan, Ren, Wan-Long, Li, Peng, Zhang, Xu-Hui, Lu, Xiao-Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-95e5d3a5e90e40d031ccb867feb85c9efe51a6dd6448eb2c8c5902f19c0d50083
cites cdi_FETCH-LOGICAL-c327t-95e5d3a5e90e40d031ccb867feb85c9efe51a6dd6448eb2c8c5902f19c0d50083
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Zhang, Yan
Ren, Wan-Long
Li, Peng
Zhang, Xu-Hui
Lu, Xiao-Bing
description Computational fluid dynamics-discrete element method is frequently used for modeling particulate flows due to its high efficiency and satisfactory accuracy. The particle volume fraction is a crucial parameter that significantly affects the computation accuracy. It may be extremely large when the particulate flows contain coarse particles because it is determined by the ratio of particle volume to cell volume. In this paper, the performance of different methods, such as the divided particle volume method (DPVM), the big particle method, and the diffusion-based method, for computing the particle volume fraction is thoroughly reviewed, implemented, and investigated. It turns out that the DPVM must not be used when the particle size is larger than cell size due to significant fluctuation of the particle volume fraction field. The big particle method is optimized for simulation accuracy and code implementation. The optimized big particle method is similar to the diffusion-based method by diffusing the particle effects to the surrounding cells. It demonstrates greater consistency with experimental observations compared to the diffusion-based method, primarily attributed to its incorporation of polydisperse effects.
doi_str_mv 10.1063/5.0176521
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2894041682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894041682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-95e5d3a5e90e40d031ccb867feb85c9efe51a6dd6448eb2c8c5902f19c0d50083</originalsourceid><addsrcrecordid>eNp9kM9KxDAQh4souK4efIOAJ4Wuk7ZJ26Ms_oMFL3ou2WTCZkmbNUld9kF8X7vbxYvgaYaZj2-YX5JcU5hR4Pk9mwEtOcvoSTKhUNVpyTk_3fclpJzn9Dy5CGENAHmd8UnyPRdW9lZE4zriNNkIH420SL6c7Vsk2gt52JmOSNdu-nhAhSXa9kYRtetEa2RIlQnSY0SCFlvsImkxrpwiwbR_9PvBoLZuG8jWxNVgFj7g7_FwmZxpYQNeHes0-Xh6fJ-_pIu359f5wyKVeVbGtGbIVC4Y1oAFKMiplMuKlxqXFZM1amRUcKV4UVS4zGQlWQ2ZprUExQCqfJrcjN6Nd589htisXe-H70KTVXUBBeVVNlC3IyW9C8GjbjbetMLvGgrNPvWGNcfUB_ZuZIM0Y1T_wD9fT4X6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894041682</pqid></control><display><type>article</type><title>Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Zhang, Yan ; Ren, Wan-Long ; Li, Peng ; Zhang, Xu-Hui ; Lu, Xiao-Bing</creator><creatorcontrib>Zhang, Yan ; Ren, Wan-Long ; Li, Peng ; Zhang, Xu-Hui ; Lu, Xiao-Bing</creatorcontrib><description>Computational fluid dynamics-discrete element method is frequently used for modeling particulate flows due to its high efficiency and satisfactory accuracy. The particle volume fraction is a crucial parameter that significantly affects the computation accuracy. It may be extremely large when the particulate flows contain coarse particles because it is determined by the ratio of particle volume to cell volume. In this paper, the performance of different methods, such as the divided particle volume method (DPVM), the big particle method, and the diffusion-based method, for computing the particle volume fraction is thoroughly reviewed, implemented, and investigated. It turns out that the DPVM must not be used when the particle size is larger than cell size due to significant fluctuation of the particle volume fraction field. The big particle method is optimized for simulation accuracy and code implementation. The optimized big particle method is similar to the diffusion-based method by diffusing the particle effects to the surrounding cells. It demonstrates greater consistency with experimental observations compared to the diffusion-based method, primarily attributed to its incorporation of polydisperse effects.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0176521</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Computational fluid dynamics ; Discrete element method ; Fluid dynamics ; Particle methods (mathematics)</subject><ispartof>Physics of fluids (1994), 2023-11, Vol.35 (11)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-95e5d3a5e90e40d031ccb867feb85c9efe51a6dd6448eb2c8c5902f19c0d50083</citedby><cites>FETCH-LOGICAL-c327t-95e5d3a5e90e40d031ccb867feb85c9efe51a6dd6448eb2c8c5902f19c0d50083</cites><orcidid>0000-0001-9614-3679 ; 0000-0001-9617-2330 ; 0000-0003-4484-9770 ; 0000-0001-9524-2106 ; 0000-0002-1532-2999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1554,27905,27906</link.rule.ids></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Ren, Wan-Long</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Xu-Hui</creatorcontrib><creatorcontrib>Lu, Xiao-Bing</creatorcontrib><title>Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles</title><title>Physics of fluids (1994)</title><description>Computational fluid dynamics-discrete element method is frequently used for modeling particulate flows due to its high efficiency and satisfactory accuracy. The particle volume fraction is a crucial parameter that significantly affects the computation accuracy. It may be extremely large when the particulate flows contain coarse particles because it is determined by the ratio of particle volume to cell volume. In this paper, the performance of different methods, such as the divided particle volume method (DPVM), the big particle method, and the diffusion-based method, for computing the particle volume fraction is thoroughly reviewed, implemented, and investigated. It turns out that the DPVM must not be used when the particle size is larger than cell size due to significant fluctuation of the particle volume fraction field. The big particle method is optimized for simulation accuracy and code implementation. The optimized big particle method is similar to the diffusion-based method by diffusing the particle effects to the surrounding cells. It demonstrates greater consistency with experimental observations compared to the diffusion-based method, primarily attributed to its incorporation of polydisperse effects.</description><subject>Accuracy</subject><subject>Computational fluid dynamics</subject><subject>Discrete element method</subject><subject>Fluid dynamics</subject><subject>Particle methods (mathematics)</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQh4souK4efIOAJ4Wuk7ZJ26Ms_oMFL3ou2WTCZkmbNUld9kF8X7vbxYvgaYaZj2-YX5JcU5hR4Pk9mwEtOcvoSTKhUNVpyTk_3fclpJzn9Dy5CGENAHmd8UnyPRdW9lZE4zriNNkIH420SL6c7Vsk2gt52JmOSNdu-nhAhSXa9kYRtetEa2RIlQnSY0SCFlvsImkxrpwiwbR_9PvBoLZuG8jWxNVgFj7g7_FwmZxpYQNeHes0-Xh6fJ-_pIu359f5wyKVeVbGtGbIVC4Y1oAFKMiplMuKlxqXFZM1amRUcKV4UVS4zGQlWQ2ZprUExQCqfJrcjN6Nd589htisXe-H70KTVXUBBeVVNlC3IyW9C8GjbjbetMLvGgrNPvWGNcfUB_ZuZIM0Y1T_wD9fT4X6</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Zhang, Yan</creator><creator>Ren, Wan-Long</creator><creator>Li, Peng</creator><creator>Zhang, Xu-Hui</creator><creator>Lu, Xiao-Bing</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9614-3679</orcidid><orcidid>https://orcid.org/0000-0001-9617-2330</orcidid><orcidid>https://orcid.org/0000-0003-4484-9770</orcidid><orcidid>https://orcid.org/0000-0001-9524-2106</orcidid><orcidid>https://orcid.org/0000-0002-1532-2999</orcidid></search><sort><creationdate>202311</creationdate><title>Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles</title><author>Zhang, Yan ; Ren, Wan-Long ; Li, Peng ; Zhang, Xu-Hui ; Lu, Xiao-Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-95e5d3a5e90e40d031ccb867feb85c9efe51a6dd6448eb2c8c5902f19c0d50083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Computational fluid dynamics</topic><topic>Discrete element method</topic><topic>Fluid dynamics</topic><topic>Particle methods (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Ren, Wan-Long</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Xu-Hui</creatorcontrib><creatorcontrib>Lu, Xiao-Bing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Ren, Wan-Long</au><au>Li, Peng</au><au>Zhang, Xu-Hui</au><au>Lu, Xiao-Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Computational fluid dynamics-discrete element method is frequently used for modeling particulate flows due to its high efficiency and satisfactory accuracy. The particle volume fraction is a crucial parameter that significantly affects the computation accuracy. It may be extremely large when the particulate flows contain coarse particles because it is determined by the ratio of particle volume to cell volume. In this paper, the performance of different methods, such as the divided particle volume method (DPVM), the big particle method, and the diffusion-based method, for computing the particle volume fraction is thoroughly reviewed, implemented, and investigated. It turns out that the DPVM must not be used when the particle size is larger than cell size due to significant fluctuation of the particle volume fraction field. The big particle method is optimized for simulation accuracy and code implementation. The optimized big particle method is similar to the diffusion-based method by diffusing the particle effects to the surrounding cells. It demonstrates greater consistency with experimental observations compared to the diffusion-based method, primarily attributed to its incorporation of polydisperse effects.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0176521</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9614-3679</orcidid><orcidid>https://orcid.org/0000-0001-9617-2330</orcidid><orcidid>https://orcid.org/0000-0003-4484-9770</orcidid><orcidid>https://orcid.org/0000-0001-9524-2106</orcidid><orcidid>https://orcid.org/0000-0002-1532-2999</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-11, Vol.35 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2894041682
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Accuracy
Computational fluid dynamics
Discrete element method
Fluid dynamics
Particle methods (mathematics)
title Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20particle%20volume%20fraction%20in%20computational%20fluid%20dynamics-discrete%20element%20method%20simulation%20of%20particulate%20flows%20with%20coarse%20particles&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zhang,%20Yan&rft.date=2023-11&rft.volume=35&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0176521&rft_dat=%3Cproquest_scita%3E2894041682%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-95e5d3a5e90e40d031ccb867feb85c9efe51a6dd6448eb2c8c5902f19c0d50083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894041682&rft_id=info:pmid/&rfr_iscdi=true