Loading…
Environmental and techno-economic evaluation for hybrid-electric propulsion architectures
Hybrid-electric propulsion is a promising alternative to sustainable aviation and is mainly considered for the commuter and regional aircraft class. However, the development of hybrid-electric propulsion variants is affected by the technology readiness level of electric components. The components’ t...
Saved in:
Published in: | Aeronautical journal 2023-11, Vol.127 (1317), p.1904-1926 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hybrid-electric propulsion is a promising alternative to sustainable aviation and is mainly considered for the commuter and regional aircraft class. However, the development of hybrid-electric propulsion variants is affected by the technology readiness level of electric components. The components’ technology will determine the electrification benefit, compared to a conventional aircraft, and will suggest which is the most beneficial variant and which has a closer entry into service date. Within this work, three different dates are explored, namely 2027, 2030 and 2040, to size three Parallel and three Series hybrid-electric architecture variants using an in-house aircraft sizing tool. All variants are compared to a conventional configuration sized using technological assumptions of 2014, with the main comparison metrics being the aircraft block fuel, energy consumption, direct operating cost and holistic environmental impact. On one hand, the Parallel configurations have reduced maximum take-off mass and mission energy consumption compared to the Series, however, the latter show a greater potential for block fuel reduction and require less onboard energy for the same mission. The annual operating cost evaluation indicates that the Parallel hybrid variant of 2030 has greater operational costs than the respective Series variant; however, it has reduced capital costs compared to the latter, making it more economical to operate considering both costs. Additionally, in the case of an energy recession, both hybrid variants of 2030 show a further cost reduction, with the Series having a total reduction of 10.4% excluding capital costs, compared to the reference aircraft. Moreover, the life cycle assessment shows that the Series variants have a lower environmental impact, both compared to the reference aircraft and the Parallel variants. The former could be up to 59.7% less detrimental to the environment than the reference aircraft, whereas the latter up to 23.9%, with the integration of renewable sources for electricity production. Finally, by the year 2040, the Series variant shows outstanding performance in all comparison metrics, compared to the Parallel and the reference aircraft. |
---|---|
ISSN: | 0001-9240 2059-6464 |
DOI: | 10.1017/aer.2023.27 |