Loading…

Modern extreme value statistics for Utopian extremes

Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a toolbox of four methodological frameworks,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Richards, Jordan, Alotaibi, Noura, Cisneros, Daniela, Gong, Yan, Guerrero, Matheus B, Redondo, Paolo, Shao, Xuanjie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Richards, Jordan
Alotaibi, Noura
Cisneros, Daniela
Gong, Yan
Guerrero, Matheus B
Redondo, Paolo
Shao, Xuanjie
description Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the EVA (2023) Conference Data Challenge, which was organised for the 13\(^\text{th}\) International Conference on Extreme Value Analysis. This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia"
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2894171322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894171322</sourcerecordid><originalsourceid>FETCH-proquest_journals_28941713223</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c1PSS3KU0itKClKzU1VKEvMKU1VKC5JLMksLslMLlZIyy9SCC3JL8hMhCsq5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLSxNDc0NjIyNj4lQBAJUvNSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894171322</pqid></control><display><type>article</type><title>Modern extreme value statistics for Utopian extremes</title><source>Publicly Available Content Database</source><creator>Richards, Jordan ; Alotaibi, Noura ; Cisneros, Daniela ; Gong, Yan ; Guerrero, Matheus B ; Redondo, Paolo ; Shao, Xuanjie</creator><creatorcontrib>Richards, Jordan ; Alotaibi, Noura ; Cisneros, Daniela ; Gong, Yan ; Guerrero, Matheus B ; Redondo, Paolo ; Shao, Xuanjie</creatorcontrib><description>Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the EVA (2023) Conference Data Challenge, which was organised for the 13\(^\text{th}\) International Conference on Extreme Value Analysis. This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia"</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Extrapolation ; Extreme value theory ; Extreme values ; Statistical distributions</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2894171322?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Richards, Jordan</creatorcontrib><creatorcontrib>Alotaibi, Noura</creatorcontrib><creatorcontrib>Cisneros, Daniela</creatorcontrib><creatorcontrib>Gong, Yan</creatorcontrib><creatorcontrib>Guerrero, Matheus B</creatorcontrib><creatorcontrib>Redondo, Paolo</creatorcontrib><creatorcontrib>Shao, Xuanjie</creatorcontrib><title>Modern extreme value statistics for Utopian extremes</title><title>arXiv.org</title><description>Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the EVA (2023) Conference Data Challenge, which was organised for the 13\(^\text{th}\) International Conference on Extreme Value Analysis. This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia"</description><subject>Extrapolation</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Statistical distributions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c1PSS3KU0itKClKzU1VKEvMKU1VKC5JLMksLslMLlZIyy9SCC3JL8hMhCsq5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLSxNDc0NjIyNj4lQBAJUvNSI</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Richards, Jordan</creator><creator>Alotaibi, Noura</creator><creator>Cisneros, Daniela</creator><creator>Gong, Yan</creator><creator>Guerrero, Matheus B</creator><creator>Redondo, Paolo</creator><creator>Shao, Xuanjie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240501</creationdate><title>Modern extreme value statistics for Utopian extremes</title><author>Richards, Jordan ; Alotaibi, Noura ; Cisneros, Daniela ; Gong, Yan ; Guerrero, Matheus B ; Redondo, Paolo ; Shao, Xuanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28941713223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Extrapolation</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Statistical distributions</topic><toplevel>online_resources</toplevel><creatorcontrib>Richards, Jordan</creatorcontrib><creatorcontrib>Alotaibi, Noura</creatorcontrib><creatorcontrib>Cisneros, Daniela</creatorcontrib><creatorcontrib>Gong, Yan</creatorcontrib><creatorcontrib>Guerrero, Matheus B</creatorcontrib><creatorcontrib>Redondo, Paolo</creatorcontrib><creatorcontrib>Shao, Xuanjie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richards, Jordan</au><au>Alotaibi, Noura</au><au>Cisneros, Daniela</au><au>Gong, Yan</au><au>Guerrero, Matheus B</au><au>Redondo, Paolo</au><au>Shao, Xuanjie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modern extreme value statistics for Utopian extremes</atitle><jtitle>arXiv.org</jtitle><date>2024-05-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the EVA (2023) Conference Data Challenge, which was organised for the 13\(^\text{th}\) International Conference on Extreme Value Analysis. This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia"</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2894171322
source Publicly Available Content Database
subjects Extrapolation
Extreme value theory
Extreme values
Statistical distributions
title Modern extreme value statistics for Utopian extremes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modern%20extreme%20value%20statistics%20for%20Utopian%20extremes&rft.jtitle=arXiv.org&rft.au=Richards,%20Jordan&rft.date=2024-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2894171322%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28941713223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894171322&rft_id=info:pmid/&rfr_iscdi=true