Loading…

On the \(L_{\infty}\)-bialgebra structure of the rational homotopy groups \(\pi_{}(\Omega \Sigma Y)\otimes \mathbb{Q}\)

We introduce the notion of an \(L_{\infty}\)-bialgebra structure on a vector space. We show that the rational homotopy groups \(\pi_{*}(\Omega \Sigma Y)\otimes \mathbb{Q}\) admit such a structure for the loop space \(\Omega \Sigma Y\) of a suspension \(\Sigma Y\) that characterizes \(Y\) up to ratio...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-11
Main Author: Samson Saneblidze
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Samson Saneblidze
description We introduce the notion of an \(L_{\infty}\)-bialgebra structure on a vector space. We show that the rational homotopy groups \(\pi_{*}(\Omega \Sigma Y)\otimes \mathbb{Q}\) admit such a structure for the loop space \(\Omega \Sigma Y\) of a suspension \(\Sigma Y\) that characterizes \(Y\) up to rational homotopy equivalence.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2894583008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894583008</sourcerecordid><originalsourceid>FETCH-proquest_journals_28945830083</originalsourceid><addsrcrecordid>eNqNzcGKwjAUheEwIFi07xCYTV0UYmK1sx4cXAgiuhECJZW0jTS9NblhkOK7W2QeYFZn83H-DxJxIZZpvuJ8SmLvb4wxvt7wLBMR-T10FBtNZbIvBmm6Ch9PuUhLo9pal05Rjy5cMThNoXpLp9BAp1ragAWE_kFrB6H344XsTTE8E3mwulZUnkxtFb0sJKCxegRWYVOWw3EszMmkUq3X8d_OyOfP9vy9S3sH96A9FjcIbsz4gudfqywXjOXif-oF6_1NIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894583008</pqid></control><display><type>article</type><title>On the \(L_{\infty}\)-bialgebra structure of the rational homotopy groups \(\pi_{}(\Omega \Sigma Y)\otimes \mathbb{Q}\)</title><source>Publicly Available Content Database</source><creator>Samson Saneblidze</creator><creatorcontrib>Samson Saneblidze</creatorcontrib><description>We introduce the notion of an \(L_{\infty}\)-bialgebra structure on a vector space. We show that the rational homotopy groups \(\pi_{*}(\Omega \Sigma Y)\otimes \mathbb{Q}\) admit such a structure for the loop space \(\Omega \Sigma Y\) of a suspension \(\Sigma Y\) that characterizes \(Y\) up to rational homotopy equivalence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Vector spaces</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2894583008?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Samson Saneblidze</creatorcontrib><title>On the \(L_{\infty}\)-bialgebra structure of the rational homotopy groups \(\pi_{}(\Omega \Sigma Y)\otimes \mathbb{Q}\)</title><title>arXiv.org</title><description>We introduce the notion of an \(L_{\infty}\)-bialgebra structure on a vector space. We show that the rational homotopy groups \(\pi_{*}(\Omega \Sigma Y)\otimes \mathbb{Q}\) admit such a structure for the loop space \(\Omega \Sigma Y\) of a suspension \(\Sigma Y\) that characterizes \(Y\) up to rational homotopy equivalence.</description><subject>Vector spaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzcGKwjAUheEwIFi07xCYTV0UYmK1sx4cXAgiuhECJZW0jTS9NblhkOK7W2QeYFZn83H-DxJxIZZpvuJ8SmLvb4wxvt7wLBMR-T10FBtNZbIvBmm6Ch9PuUhLo9pal05Rjy5cMThNoXpLp9BAp1ragAWE_kFrB6H344XsTTE8E3mwulZUnkxtFb0sJKCxegRWYVOWw3EszMmkUq3X8d_OyOfP9vy9S3sH96A9FjcIbsz4gudfqywXjOXif-oF6_1NIQ</recordid><startdate>20231126</startdate><enddate>20231126</enddate><creator>Samson Saneblidze</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231126</creationdate><title>On the \(L_{\infty}\)-bialgebra structure of the rational homotopy groups \(\pi_{}(\Omega \Sigma Y)\otimes \mathbb{Q}\)</title><author>Samson Saneblidze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28945830083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Samson Saneblidze</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samson Saneblidze</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the \(L_{\infty}\)-bialgebra structure of the rational homotopy groups \(\pi_{}(\Omega \Sigma Y)\otimes \mathbb{Q}\)</atitle><jtitle>arXiv.org</jtitle><date>2023-11-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We introduce the notion of an \(L_{\infty}\)-bialgebra structure on a vector space. We show that the rational homotopy groups \(\pi_{*}(\Omega \Sigma Y)\otimes \mathbb{Q}\) admit such a structure for the loop space \(\Omega \Sigma Y\) of a suspension \(\Sigma Y\) that characterizes \(Y\) up to rational homotopy equivalence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2894583008
source Publicly Available Content Database
subjects Vector spaces
title On the \(L_{\infty}\)-bialgebra structure of the rational homotopy groups \(\pi_{}(\Omega \Sigma Y)\otimes \mathbb{Q}\)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20%5C(L_%7B%5Cinfty%7D%5C)-bialgebra%20structure%20of%20the%20rational%20homotopy%20groups%20%5C(%5Cpi_%7B%7D(%5COmega%20%5CSigma%20Y)%5Cotimes%20%5Cmathbb%7BQ%7D%5C)&rft.jtitle=arXiv.org&rft.au=Samson%20Saneblidze&rft.date=2023-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2894583008%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28945830083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894583008&rft_id=info:pmid/&rfr_iscdi=true