Loading…

Interpolation Problem with Knots on a Line for Solutions of a Multidimensional Convolution Equation

We study an interpolation problem with knots on a straight line for solutions of a multidimensional convolution equation of the form , where is a given radial distribution with compact support. The case is considered when the set of interpolation knots is quite rare (the distance between neighboring...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2023-08, Vol.44 (8), p.3630-3639
Main Authors: Volchkov, V. V., Volchkov, Vit. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-b20b4e8b325ad30fb6c24e966554087064a5e031c75bd65877cdf7ede1f9a6223
container_end_page 3639
container_issue 8
container_start_page 3630
container_title Lobachevskii journal of mathematics
container_volume 44
creator Volchkov, V. V.
Volchkov, Vit. V.
description We study an interpolation problem with knots on a straight line for solutions of a multidimensional convolution equation of the form , where is a given radial distribution with compact support. The case is considered when the set of interpolation knots is quite rare (the distance between neighboring knots tends to infinity as their numbers increase). In this case, a criterion for the solvability of the interpolation problem in the class of solutions of tempered growth is obtained. It is shown that for the existence of such a solution it is necessary and sufficient that the set of positive zeros of the spherical transform of the distribution be nonempty.
doi_str_mv 10.1134/S1995080223080590
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894911987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894911987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b20b4e8b325ad30fb6c24e966554087064a5e031c75bd65877cdf7ede1f9a6223</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82qS3WSTo5RqixWF6nnJ7k50yzZpk6zivze1BQ_iZTK8-d5jMghdUnJNaV7cLKlSnEjCWJ4qV-QIjaikMlNKsOPUp3G2m5-isxBWJIFCiBFq5jaC37hex85Z_Oxd3cMaf3bxHT9YFwNOqsaLzgI2zuOl64cdmXST9Mehj13brcGGJOoeT5z9OCB4uh1-Us_RidF9gIvDO0avd9OXySxbPN3PJ7eLrGFCxqxmpC5A1jnjus2JqUXDClBCcF4QWRJRaA4kp03J61ZwWZZNa0pogRqlRfr4GF3tczfebQcIsVq5waetQsWkKhSlSpaJonuq8S4ED6ba-G6t_VdFSbW7ZfXnlsnD9p6QWPsG_jf5f9M3JAR2YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894911987</pqid></control><display><type>article</type><title>Interpolation Problem with Knots on a Line for Solutions of a Multidimensional Convolution Equation</title><source>Springer Nature</source><creator>Volchkov, V. V. ; Volchkov, Vit. V.</creator><creatorcontrib>Volchkov, V. V. ; Volchkov, Vit. V.</creatorcontrib><description>We study an interpolation problem with knots on a straight line for solutions of a multidimensional convolution equation of the form , where is a given radial distribution with compact support. The case is considered when the set of interpolation knots is quite rare (the distance between neighboring knots tends to infinity as their numbers increase). In this case, a criterion for the solvability of the interpolation problem in the class of solutions of tempered growth is obtained. It is shown that for the existence of such a solution it is necessary and sufficient that the set of positive zeros of the spherical transform of the distribution be nonempty.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223080590</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Convolution ; Geometry ; Interpolation ; Knots ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Radial distribution ; Straight lines</subject><ispartof>Lobachevskii journal of mathematics, 2023-08, Vol.44 (8), p.3630-3639</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b20b4e8b325ad30fb6c24e966554087064a5e031c75bd65877cdf7ede1f9a6223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Volchkov, V. V.</creatorcontrib><creatorcontrib>Volchkov, Vit. V.</creatorcontrib><title>Interpolation Problem with Knots on a Line for Solutions of a Multidimensional Convolution Equation</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We study an interpolation problem with knots on a straight line for solutions of a multidimensional convolution equation of the form , where is a given radial distribution with compact support. The case is considered when the set of interpolation knots is quite rare (the distance between neighboring knots tends to infinity as their numbers increase). In this case, a criterion for the solvability of the interpolation problem in the class of solutions of tempered growth is obtained. It is shown that for the existence of such a solution it is necessary and sufficient that the set of positive zeros of the spherical transform of the distribution be nonempty.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Convolution</subject><subject>Geometry</subject><subject>Interpolation</subject><subject>Knots</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Radial distribution</subject><subject>Straight lines</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82qS3WSTo5RqixWF6nnJ7k50yzZpk6zivze1BQ_iZTK8-d5jMghdUnJNaV7cLKlSnEjCWJ4qV-QIjaikMlNKsOPUp3G2m5-isxBWJIFCiBFq5jaC37hex85Z_Oxd3cMaf3bxHT9YFwNOqsaLzgI2zuOl64cdmXST9Mehj13brcGGJOoeT5z9OCB4uh1-Us_RidF9gIvDO0avd9OXySxbPN3PJ7eLrGFCxqxmpC5A1jnjus2JqUXDClBCcF4QWRJRaA4kp03J61ZwWZZNa0pogRqlRfr4GF3tczfebQcIsVq5waetQsWkKhSlSpaJonuq8S4ED6ba-G6t_VdFSbW7ZfXnlsnD9p6QWPsG_jf5f9M3JAR2YQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Volchkov, V. V.</creator><creator>Volchkov, Vit. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Interpolation Problem with Knots on a Line for Solutions of a Multidimensional Convolution Equation</title><author>Volchkov, V. V. ; Volchkov, Vit. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b20b4e8b325ad30fb6c24e966554087064a5e031c75bd65877cdf7ede1f9a6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Convolution</topic><topic>Geometry</topic><topic>Interpolation</topic><topic>Knots</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Radial distribution</topic><topic>Straight lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volchkov, V. V.</creatorcontrib><creatorcontrib>Volchkov, Vit. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volchkov, V. V.</au><au>Volchkov, Vit. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpolation Problem with Knots on a Line for Solutions of a Multidimensional Convolution Equation</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>44</volume><issue>8</issue><spage>3630</spage><epage>3639</epage><pages>3630-3639</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We study an interpolation problem with knots on a straight line for solutions of a multidimensional convolution equation of the form , where is a given radial distribution with compact support. The case is considered when the set of interpolation knots is quite rare (the distance between neighboring knots tends to infinity as their numbers increase). In this case, a criterion for the solvability of the interpolation problem in the class of solutions of tempered growth is obtained. It is shown that for the existence of such a solution it is necessary and sufficient that the set of positive zeros of the spherical transform of the distribution be nonempty.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223080590</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023-08, Vol.44 (8), p.3630-3639
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2894911987
source Springer Nature
subjects Algebra
Analysis
Convolution
Geometry
Interpolation
Knots
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Radial distribution
Straight lines
title Interpolation Problem with Knots on a Line for Solutions of a Multidimensional Convolution Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpolation%20Problem%20with%20Knots%20on%20a%20Line%20for%20Solutions%20of%20a%20Multidimensional%20Convolution%20Equation&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Volchkov,%20V.%20V.&rft.date=2023-08-01&rft.volume=44&rft.issue=8&rft.spage=3630&rft.epage=3639&rft.pages=3630-3639&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223080590&rft_dat=%3Cproquest_cross%3E2894911987%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-b20b4e8b325ad30fb6c24e966554087064a5e031c75bd65877cdf7ede1f9a6223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894911987&rft_id=info:pmid/&rfr_iscdi=true