Loading…
Mitigating Biases with Diverse Ensembles and Diffusion Models
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut learning, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploi...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Scimeca, Luca Rubinstein, Alexander Teney, Damien Oh, Seong Joon Armand Mihai Nicolicioiu Bengio, Yoshua |
description | Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut learning, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) to mitigate this form of bias. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2895042391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895042391</sourcerecordid><originalsourceid>FETCH-proquest_journals_28950423913</originalsourceid><addsrcrecordid>eNqNirEOgjAUABsTE4nyD02cScorKAwuKsaFzZ2U8MBHsFVe0d-XwQ9wuuTuFiIAreMoSwBWImTulVKw20Oa6kAcSvLUGU-2k0cyjCw_5O_yTG8cGWVhGR_1MGtjm9m27cTkrCxdgwNvxLI1A2P441psL8XtdI2eo3tNyL7q3TTaOVWQ5alKQOex_u_6AmeGN8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895042391</pqid></control><display><type>article</type><title>Mitigating Biases with Diverse Ensembles and Diffusion Models</title><source>Publicly Available Content Database</source><creator>Scimeca, Luca ; Rubinstein, Alexander ; Teney, Damien ; Oh, Seong Joon ; Armand Mihai Nicolicioiu ; Bengio, Yoshua</creator><creatorcontrib>Scimeca, Luca ; Rubinstein, Alexander ; Teney, Damien ; Oh, Seong Joon ; Armand Mihai Nicolicioiu ; Bengio, Yoshua</creatorcontrib><description>Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut learning, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) to mitigate this form of bias. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Data collection ; Probabilistic models</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2895042391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Scimeca, Luca</creatorcontrib><creatorcontrib>Rubinstein, Alexander</creatorcontrib><creatorcontrib>Teney, Damien</creatorcontrib><creatorcontrib>Oh, Seong Joon</creatorcontrib><creatorcontrib>Armand Mihai Nicolicioiu</creatorcontrib><creatorcontrib>Bengio, Yoshua</creatorcontrib><title>Mitigating Biases with Diverse Ensembles and Diffusion Models</title><title>arXiv.org</title><description>Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut learning, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) to mitigate this form of bias. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.</description><subject>Bias</subject><subject>Data collection</subject><subject>Probabilistic models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEOgjAUABsTE4nyD02cScorKAwuKsaFzZ2U8MBHsFVe0d-XwQ9wuuTuFiIAreMoSwBWImTulVKw20Oa6kAcSvLUGU-2k0cyjCw_5O_yTG8cGWVhGR_1MGtjm9m27cTkrCxdgwNvxLI1A2P441psL8XtdI2eo3tNyL7q3TTaOVWQ5alKQOex_u_6AmeGN8Y</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Scimeca, Luca</creator><creator>Rubinstein, Alexander</creator><creator>Teney, Damien</creator><creator>Oh, Seong Joon</creator><creator>Armand Mihai Nicolicioiu</creator><creator>Bengio, Yoshua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240306</creationdate><title>Mitigating Biases with Diverse Ensembles and Diffusion Models</title><author>Scimeca, Luca ; Rubinstein, Alexander ; Teney, Damien ; Oh, Seong Joon ; Armand Mihai Nicolicioiu ; Bengio, Yoshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28950423913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Data collection</topic><topic>Probabilistic models</topic><toplevel>online_resources</toplevel><creatorcontrib>Scimeca, Luca</creatorcontrib><creatorcontrib>Rubinstein, Alexander</creatorcontrib><creatorcontrib>Teney, Damien</creatorcontrib><creatorcontrib>Oh, Seong Joon</creatorcontrib><creatorcontrib>Armand Mihai Nicolicioiu</creatorcontrib><creatorcontrib>Bengio, Yoshua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scimeca, Luca</au><au>Rubinstein, Alexander</au><au>Teney, Damien</au><au>Oh, Seong Joon</au><au>Armand Mihai Nicolicioiu</au><au>Bengio, Yoshua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mitigating Biases with Diverse Ensembles and Diffusion Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut learning, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) to mitigate this form of bias. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2895042391 |
source | Publicly Available Content Database |
subjects | Bias Data collection Probabilistic models |
title | Mitigating Biases with Diverse Ensembles and Diffusion Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mitigating%20Biases%20with%20Diverse%20Ensembles%20and%20Diffusion%20Models&rft.jtitle=arXiv.org&rft.au=Scimeca,%20Luca&rft.date=2024-03-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2895042391%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28950423913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895042391&rft_id=info:pmid/&rfr_iscdi=true |