Loading…

Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems

We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems { − [ φ ( u ′ ) ] ′ = λ u p ( 1 − u N ) in ( − L , L ) , u ( − L ) = u ( L ) = 0 , where p > 1, N > 0, λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter, and ϕ (...

Full description

Saved in:
Bibliographic Details
Published in:Czechoslovak mathematical journal 2023-12, Vol.73 (4), p.1081-1098
Main Authors: Huang, Shao-Yuan, Hsieh, Ping-Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c231t-3af641e4fe08e3445ebe58d8d73a266867df164e19eeaa1c5a2e917c8c1f07363
container_end_page 1098
container_issue 4
container_start_page 1081
container_title Czechoslovak mathematical journal
container_volume 73
creator Huang, Shao-Yuan
Hsieh, Ping-Han
description We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems { − [ φ ( u ′ ) ] ′ = λ u p ( 1 − u N ) in ( − L , L ) , u ( − L ) = u ( L ) = 0 , where p > 1, N > 0, λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter, and ϕ ( u ) is either ϕ ( u ) = u or φ ( u ) = u / 1 − u 2 . We prove that the corresponding bifurcation curve is ⊂-shape. Thus, the exact multiplicity of positive solutions can be obtained.
doi_str_mv 10.21136/CMJ.2023.0359-22
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2895312059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895312059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-3af641e4fe08e3445ebe58d8d73a266867df164e19eeaa1c5a2e917c8c1f07363</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKc_wLuA1505J2maXsqYX0y80euapacjo2trkw7119ttglcvnPfhvPAwdg1ihgBS385fnmcoUM6ETPME8YRNIM0wyUHBKZsIAZAorfCcXYSwEUJIUGbCPhZf1kW-Herou9o7H7-5bUq-8tXQOxt923A39DsKvK141wYf_Y54aOth3x2ua2qot7X_oZLX7dqH6B3v-nZV0zZcsrPK1oGu_nLK3u8Xb_PHZPn68DS_WyYOJcRE2korIFWRMCSVSmlFqSlNmUmLWhudlRVoRZATWQsutUg5ZM44qEQmtZyym-PfcfhzoBCLTTv0zThZoMlTCSjSfKTwSIWu982a-n8KRHEwWYwmi73JYm-yQJS_MaBogQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895312059</pqid></control><display><type>article</type><title>Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems</title><source>Springer Nature</source><creator>Huang, Shao-Yuan ; Hsieh, Ping-Han</creator><creatorcontrib>Huang, Shao-Yuan ; Hsieh, Ping-Han</creatorcontrib><description>We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems { − [ φ ( u ′ ) ] ′ = λ u p ( 1 − u N ) in ( − L , L ) , u ( − L ) = u ( L ) = 0 , where p &gt; 1, N &gt; 0, λ &gt; 0 is a bifurcation parameter, L &gt; 0 is an evolution parameter, and ϕ ( u ) is either ϕ ( u ) = u or φ ( u ) = u / 1 − u 2 . We prove that the corresponding bifurcation curve is ⊂-shape. Thus, the exact multiplicity of positive solutions can be obtained.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2023.0359-22</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Bifurcations ; Convex and Discrete Geometry ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Parameters</subject><ispartof>Czechoslovak mathematical journal, 2023-12, Vol.73 (4), p.1081-1098</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2023</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c231t-3af641e4fe08e3445ebe58d8d73a266867df164e19eeaa1c5a2e917c8c1f07363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Shao-Yuan</creatorcontrib><creatorcontrib>Hsieh, Ping-Han</creatorcontrib><title>Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems</title><title>Czechoslovak mathematical journal</title><addtitle>Czech Math J</addtitle><description>We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems { − [ φ ( u ′ ) ] ′ = λ u p ( 1 − u N ) in ( − L , L ) , u ( − L ) = u ( L ) = 0 , where p &gt; 1, N &gt; 0, λ &gt; 0 is a bifurcation parameter, L &gt; 0 is an evolution parameter, and ϕ ( u ) is either ϕ ( u ) = u or φ ( u ) = u / 1 − u 2 . We prove that the corresponding bifurcation curve is ⊂-shape. Thus, the exact multiplicity of positive solutions can be obtained.</description><subject>Analysis</subject><subject>Bifurcations</subject><subject>Convex and Discrete Geometry</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Parameters</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkF1LwzAUhoMoOKc_wLuA1505J2maXsqYX0y80euapacjo2trkw7119ttglcvnPfhvPAwdg1ihgBS385fnmcoUM6ETPME8YRNIM0wyUHBKZsIAZAorfCcXYSwEUJIUGbCPhZf1kW-Herou9o7H7-5bUq-8tXQOxt923A39DsKvK141wYf_Y54aOth3x2ua2qot7X_oZLX7dqH6B3v-nZV0zZcsrPK1oGu_nLK3u8Xb_PHZPn68DS_WyYOJcRE2korIFWRMCSVSmlFqSlNmUmLWhudlRVoRZATWQsutUg5ZM44qEQmtZyym-PfcfhzoBCLTTv0zThZoMlTCSjSfKTwSIWu982a-n8KRHEwWYwmi73JYm-yQJS_MaBogQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Huang, Shao-Yuan</creator><creator>Hsieh, Ping-Han</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20231201</creationdate><title>Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems</title><author>Huang, Shao-Yuan ; Hsieh, Ping-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-3af641e4fe08e3445ebe58d8d73a266867df164e19eeaa1c5a2e917c8c1f07363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bifurcations</topic><topic>Convex and Discrete Geometry</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shao-Yuan</creatorcontrib><creatorcontrib>Hsieh, Ping-Han</creatorcontrib><jtitle>Czechoslovak mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shao-Yuan</au><au>Hsieh, Ping-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems</atitle><jtitle>Czechoslovak mathematical journal</jtitle><stitle>Czech Math J</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>73</volume><issue>4</issue><spage>1081</spage><epage>1098</epage><pages>1081-1098</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems { − [ φ ( u ′ ) ] ′ = λ u p ( 1 − u N ) in ( − L , L ) , u ( − L ) = u ( L ) = 0 , where p &gt; 1, N &gt; 0, λ &gt; 0 is a bifurcation parameter, L &gt; 0 is an evolution parameter, and ϕ ( u ) is either ϕ ( u ) = u or φ ( u ) = u / 1 − u 2 . We prove that the corresponding bifurcation curve is ⊂-shape. Thus, the exact multiplicity of positive solutions can be obtained.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2023.0359-22</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak mathematical journal, 2023-12, Vol.73 (4), p.1081-1098
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2895312059
source Springer Nature
subjects Analysis
Bifurcations
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Parameters
title Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20multiplicity%20and%20bifurcation%20curves%20of%20positive%20solutions%20of%20generalized%20logistic%20problems&rft.jtitle=Czechoslovak%20mathematical%20journal&rft.au=Huang,%20Shao-Yuan&rft.date=2023-12-01&rft.volume=73&rft.issue=4&rft.spage=1081&rft.epage=1098&rft.pages=1081-1098&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2023.0359-22&rft_dat=%3Cproquest_sprin%3E2895312059%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231t-3af641e4fe08e3445ebe58d8d73a266867df164e19eeaa1c5a2e917c8c1f07363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895312059&rft_id=info:pmid/&rfr_iscdi=true