Loading…

To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm

In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent...

Full description

Saved in:
Bibliographic Details
Published in:Afrika mathematica 2024-03, Vol.35 (1), Article 8
Main Authors: Keshtkar, Mahdi, Shivanian, Elyas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33
container_end_page
container_issue 1
container_start_page
container_title Afrika mathematica
container_volume 35
creator Keshtkar, Mahdi
Shivanian, Elyas
description In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented.
doi_str_mv 10.1007/s13370-023-01151-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895760437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895760437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33</originalsourceid><addsrcrecordid>eNp9Uc1q3DAQFiGBLJt9gZwEPTvRnyX7WJY2DSz0sjkLrSTHCrbkSvIW5z3yvtXGhd46MMww388cPgDuMXrACInHhCkVqEKEVgjjGlfNFdgQ3KJKcN5cgw1GmFQtQ_Ut2KX0hkoxjnlNN-DjGGDKs1lg7i3sl8nGUxichsr7eVARds7D3y73MNuxgCrP0UJjJ-uN9fmiiqMaoA7ezDq7s8sLPDsFw5Td6N6tgfvenpbU2zOcwrD4MDo1pNXT-WyjC7EgZYVqeA2x3Mc7cNMVkt39nVvw8v3bcf-jOvx8et5_PVSaCJQrqpDgpYk4dW0tdNdygzVnbSeMQprWTDQGC00bVtesJYwqfkLMNB2pOe0o3YIvq-8Uw6_Zpizfwhx9eSlJUxw5YlQUFllZOoaUou3kFN2o4iIxkpcE5JqALAnIzwRkU0R0FaVC9q82_rP-j-oPBO2Mag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895760437</pqid></control><display><type>article</type><title>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</title><source>Springer Nature</source><creator>Keshtkar, Mahdi ; Shivanian, Elyas</creator><creatorcontrib>Keshtkar, Mahdi ; Shivanian, Elyas</creatorcontrib><description>In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01151-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Boundary conditions ; Chebyshev approximation ; Functions (mathematics) ; Heat transfer ; History of Mathematical Sciences ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Optimization ; Polynomials ; Series (mathematics) ; Temperature dependence ; Thermal conductivity</subject><ispartof>Afrika mathematica, 2024-03, Vol.35 (1), Article 8</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Keshtkar, Mahdi</creatorcontrib><creatorcontrib>Shivanian, Elyas</creatorcontrib><title>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Chebyshev approximation</subject><subject>Functions (mathematics)</subject><subject>Heat transfer</subject><subject>History of Mathematical Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Series (mathematics)</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9Uc1q3DAQFiGBLJt9gZwEPTvRnyX7WJY2DSz0sjkLrSTHCrbkSvIW5z3yvtXGhd46MMww388cPgDuMXrACInHhCkVqEKEVgjjGlfNFdgQ3KJKcN5cgw1GmFQtQ_Ut2KX0hkoxjnlNN-DjGGDKs1lg7i3sl8nGUxichsr7eVARds7D3y73MNuxgCrP0UJjJ-uN9fmiiqMaoA7ezDq7s8sLPDsFw5Td6N6tgfvenpbU2zOcwrD4MDo1pNXT-WyjC7EgZYVqeA2x3Mc7cNMVkt39nVvw8v3bcf-jOvx8et5_PVSaCJQrqpDgpYk4dW0tdNdygzVnbSeMQprWTDQGC00bVtesJYwqfkLMNB2pOe0o3YIvq-8Uw6_Zpizfwhx9eSlJUxw5YlQUFllZOoaUou3kFN2o4iIxkpcE5JqALAnIzwRkU0R0FaVC9q82_rP-j-oPBO2Mag</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Keshtkar, Mahdi</creator><creator>Shivanian, Elyas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</title><author>Keshtkar, Mahdi ; Shivanian, Elyas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Chebyshev approximation</topic><topic>Functions (mathematics)</topic><topic>Heat transfer</topic><topic>History of Mathematical Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Series (mathematics)</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshtkar, Mahdi</creatorcontrib><creatorcontrib>Shivanian, Elyas</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshtkar, Mahdi</au><au>Shivanian, Elyas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><artnum>8</artnum><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01151-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2024-03, Vol.35 (1), Article 8
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2895760437
source Springer Nature
subjects Algorithms
Applications of Mathematics
Boundary conditions
Chebyshev approximation
Functions (mathematics)
Heat transfer
History of Mathematical Sciences
Mathematical analysis
Mathematics
Mathematics and Statistics
Mathematics Education
Optimization
Polynomials
Series (mathematics)
Temperature dependence
Thermal conductivity
title To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=To%20study%20the%20hyperbolic%20annular%20fin%20with%20temperature%20dependent%20thermal%20conductivity%20via%20optimized%20Chebyshev%20polynomials%20with%20interior%20point%20algorithm&rft.jtitle=Afrika%20mathematica&rft.au=Keshtkar,%20Mahdi&rft.date=2024-03-01&rft.volume=35&rft.issue=1&rft.artnum=8&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01151-8&rft_dat=%3Cproquest_cross%3E2895760437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895760437&rft_id=info:pmid/&rfr_iscdi=true