Loading…
To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm
In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent...
Saved in:
Published in: | Afrika mathematica 2024-03, Vol.35 (1), Article 8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Afrika mathematica |
container_volume | 35 |
creator | Keshtkar, Mahdi Shivanian, Elyas |
description | In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented. |
doi_str_mv | 10.1007/s13370-023-01151-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895760437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895760437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33</originalsourceid><addsrcrecordid>eNp9Uc1q3DAQFiGBLJt9gZwEPTvRnyX7WJY2DSz0sjkLrSTHCrbkSvIW5z3yvtXGhd46MMww388cPgDuMXrACInHhCkVqEKEVgjjGlfNFdgQ3KJKcN5cgw1GmFQtQ_Ut2KX0hkoxjnlNN-DjGGDKs1lg7i3sl8nGUxichsr7eVARds7D3y73MNuxgCrP0UJjJ-uN9fmiiqMaoA7ezDq7s8sLPDsFw5Td6N6tgfvenpbU2zOcwrD4MDo1pNXT-WyjC7EgZYVqeA2x3Mc7cNMVkt39nVvw8v3bcf-jOvx8et5_PVSaCJQrqpDgpYk4dW0tdNdygzVnbSeMQprWTDQGC00bVtesJYwqfkLMNB2pOe0o3YIvq-8Uw6_Zpizfwhx9eSlJUxw5YlQUFllZOoaUou3kFN2o4iIxkpcE5JqALAnIzwRkU0R0FaVC9q82_rP-j-oPBO2Mag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895760437</pqid></control><display><type>article</type><title>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</title><source>Springer Nature</source><creator>Keshtkar, Mahdi ; Shivanian, Elyas</creator><creatorcontrib>Keshtkar, Mahdi ; Shivanian, Elyas</creatorcontrib><description>In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01151-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Boundary conditions ; Chebyshev approximation ; Functions (mathematics) ; Heat transfer ; History of Mathematical Sciences ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Optimization ; Polynomials ; Series (mathematics) ; Temperature dependence ; Thermal conductivity</subject><ispartof>Afrika mathematica, 2024-03, Vol.35 (1), Article 8</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Keshtkar, Mahdi</creatorcontrib><creatorcontrib>Shivanian, Elyas</creatorcontrib><title>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Chebyshev approximation</subject><subject>Functions (mathematics)</subject><subject>Heat transfer</subject><subject>History of Mathematical Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Series (mathematics)</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9Uc1q3DAQFiGBLJt9gZwEPTvRnyX7WJY2DSz0sjkLrSTHCrbkSvIW5z3yvtXGhd46MMww388cPgDuMXrACInHhCkVqEKEVgjjGlfNFdgQ3KJKcN5cgw1GmFQtQ_Ut2KX0hkoxjnlNN-DjGGDKs1lg7i3sl8nGUxichsr7eVARds7D3y73MNuxgCrP0UJjJ-uN9fmiiqMaoA7ezDq7s8sLPDsFw5Td6N6tgfvenpbU2zOcwrD4MDo1pNXT-WyjC7EgZYVqeA2x3Mc7cNMVkt39nVvw8v3bcf-jOvx8et5_PVSaCJQrqpDgpYk4dW0tdNdygzVnbSeMQprWTDQGC00bVtesJYwqfkLMNB2pOe0o3YIvq-8Uw6_Zpizfwhx9eSlJUxw5YlQUFllZOoaUou3kFN2o4iIxkpcE5JqALAnIzwRkU0R0FaVC9q82_rP-j-oPBO2Mag</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Keshtkar, Mahdi</creator><creator>Shivanian, Elyas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</title><author>Keshtkar, Mahdi ; Shivanian, Elyas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Chebyshev approximation</topic><topic>Functions (mathematics)</topic><topic>Heat transfer</topic><topic>History of Mathematical Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Series (mathematics)</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshtkar, Mahdi</creatorcontrib><creatorcontrib>Shivanian, Elyas</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshtkar, Mahdi</au><au>Shivanian, Elyas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><artnum>8</artnum><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In this paper, the problem of an annular fin of hyperbolic profile with temperature dependent thermal conductivity is discussed. A novel intelligent computational approach is developed for searching the solution. In order to achieve this aim, the governing equation is transformed into an equivalent problem whose boundary conditions are such that they are convenient to apply reformed version of Chebyshev polynomials of the first kind. These Chebyshev polynomials based functions construct approximate series solution with unknown weights. The mathematical formulation of optimization problem consists of an unsupervised error which is minimized by tuning weights via interior point method. The trial approximate solution is validated by imposing tolerance constrained into optimization problem. Furthermore, a more accurate discussion of the effect of fin dimensions, surface convection characteristics and the thermal conductivity parameter on the thermal performance of the fin is graphically presented.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01151-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-9405 |
ispartof | Afrika mathematica, 2024-03, Vol.35 (1), Article 8 |
issn | 1012-9405 2190-7668 |
language | eng |
recordid | cdi_proquest_journals_2895760437 |
source | Springer Nature |
subjects | Algorithms Applications of Mathematics Boundary conditions Chebyshev approximation Functions (mathematics) Heat transfer History of Mathematical Sciences Mathematical analysis Mathematics Mathematics and Statistics Mathematics Education Optimization Polynomials Series (mathematics) Temperature dependence Thermal conductivity |
title | To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=To%20study%20the%20hyperbolic%20annular%20fin%20with%20temperature%20dependent%20thermal%20conductivity%20via%20optimized%20Chebyshev%20polynomials%20with%20interior%20point%20algorithm&rft.jtitle=Afrika%20mathematica&rft.au=Keshtkar,%20Mahdi&rft.date=2024-03-01&rft.volume=35&rft.issue=1&rft.artnum=8&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01151-8&rft_dat=%3Cproquest_cross%3E2895760437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-3a076a0727bf957cf96d1c649f7da0c35478d17c3845549243a6b04d8f2563f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895760437&rft_id=info:pmid/&rfr_iscdi=true |