Loading…

Computational optimization of multi-material layered nanodimer for multipurpose applications in nanotechnology

In this paper, we use computational methods to investigate the plasmonic properties of multi-layered dimers. These dimers are composed of layers of gold–silica–gold and gold–silica–silver, with shifts in their core and middle layers. This asymmetry breaks the geometrical symmetry, revealing plasmon...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2023-12, Vol.129 (12), Article 871
Main Authors: Jamil, Saqib, Khalil, Usman Khan, Jamil, Saima, Farooq, Waqas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-74fb200da861c1e01f736770821a65e474967860dbfc93d4c6debbc807cdb6d93
container_end_page
container_issue 12
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 129
creator Jamil, Saqib
Khalil, Usman Khan
Jamil, Saima
Farooq, Waqas
description In this paper, we use computational methods to investigate the plasmonic properties of multi-layered dimers. These dimers are composed of layers of gold–silica–gold and gold–silica–silver, with shifts in their core and middle layers. This asymmetry breaks the geometrical symmetry, revealing plasmon resonances that are typically invisible in concentric geometries. This study explains the origin of these resonances using plasmon hybridization theory, highlighting the interaction between primitive and multipolar modes in the core and shell of the investigated proposed structure. These interactions improve the coupling of the higher order modes to light by inducing a dipole moment. The asymmetry is attributed to the uneven distribution of surface charges, leading to a transition from multipolar to dipolar characteristics in the higher order modes. Through visual examination of the dipolar component in surface charge distributions, we qualitatively establish the relative amplitudes of the modes. Our results demonstrate the red-shifting of resonant wavelengths with increased core offset, resulted in the enhanced absorption rather than scattering. This computational study provide a terse depth for the deeper understanding towards the plasmonic behavior in multilayered dimers with core and middle layer shifts, uncovering the underlying mechanisms of symmetry breaking.
doi_str_mv 10.1007/s00339-023-07144-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895762147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895762147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-74fb200da861c1e01f736770821a65e474967860dbfc93d4c6debbc807cdb6d93</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19GXjybtUga_YMCNrkOapmOGtolJuhh_vXUquPNtwiPnXngHoWsCtwRA3iUAxmoMlGGQhHNcnqAV4YxiEAxO0QpqLnHFanGOLlLawzyc0hUaN34IU9bZ-VH3hQ_ZDe7ruBa-K4apzw4POtvo5u9eH2y0bTHq0bdusLHofFygMMXgky10CL0zx4JUuPGIZms-Rt_73eESnXW6T_bq912j98eHt80z3r4-vWzut9hQCRlL3jUUoNWVIIZYIJ1kQkqoKNGitFzyWshKQNt0pmYtN6K1TWMqkKZtRFuzNbpZekP0n5NNWe39FOcLk6JVXUpBCZczRRfKRJ9StJ0K0Q06HhQB9eNVLV7V7FUdvapyDrEllGZ43Nn4V_1P6hvuQ34x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895762147</pqid></control><display><type>article</type><title>Computational optimization of multi-material layered nanodimer for multipurpose applications in nanotechnology</title><source>Springer Nature</source><creator>Jamil, Saqib ; Khalil, Usman Khan ; Jamil, Saima ; Farooq, Waqas</creator><creatorcontrib>Jamil, Saqib ; Khalil, Usman Khan ; Jamil, Saima ; Farooq, Waqas</creatorcontrib><description>In this paper, we use computational methods to investigate the plasmonic properties of multi-layered dimers. These dimers are composed of layers of gold–silica–gold and gold–silica–silver, with shifts in their core and middle layers. This asymmetry breaks the geometrical symmetry, revealing plasmon resonances that are typically invisible in concentric geometries. This study explains the origin of these resonances using plasmon hybridization theory, highlighting the interaction between primitive and multipolar modes in the core and shell of the investigated proposed structure. These interactions improve the coupling of the higher order modes to light by inducing a dipole moment. The asymmetry is attributed to the uneven distribution of surface charges, leading to a transition from multipolar to dipolar characteristics in the higher order modes. Through visual examination of the dipolar component in surface charge distributions, we qualitatively establish the relative amplitudes of the modes. Our results demonstrate the red-shifting of resonant wavelengths with increased core offset, resulted in the enhanced absorption rather than scattering. This computational study provide a terse depth for the deeper understanding towards the plasmonic behavior in multilayered dimers with core and middle layer shifts, uncovering the underlying mechanisms of symmetry breaking.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-07144-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Asymmetry ; Broken symmetry ; Characterization and Evaluation of Materials ; Charge distribution ; Condensed Matter Physics ; Dimers ; Dipole moments ; Gold ; Machines ; Manufacturing ; Materials science ; Multilayers ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Plasmonics ; Plasmons ; Processes ; Silicon dioxide ; Silver ; Surface charge ; Surfaces and Interfaces ; Symmetry ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2023-12, Vol.129 (12), Article 871</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-74fb200da861c1e01f736770821a65e474967860dbfc93d4c6debbc807cdb6d93</cites><orcidid>0000-0001-6125-0423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jamil, Saqib</creatorcontrib><creatorcontrib>Khalil, Usman Khan</creatorcontrib><creatorcontrib>Jamil, Saima</creatorcontrib><creatorcontrib>Farooq, Waqas</creatorcontrib><title>Computational optimization of multi-material layered nanodimer for multipurpose applications in nanotechnology</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this paper, we use computational methods to investigate the plasmonic properties of multi-layered dimers. These dimers are composed of layers of gold–silica–gold and gold–silica–silver, with shifts in their core and middle layers. This asymmetry breaks the geometrical symmetry, revealing plasmon resonances that are typically invisible in concentric geometries. This study explains the origin of these resonances using plasmon hybridization theory, highlighting the interaction between primitive and multipolar modes in the core and shell of the investigated proposed structure. These interactions improve the coupling of the higher order modes to light by inducing a dipole moment. The asymmetry is attributed to the uneven distribution of surface charges, leading to a transition from multipolar to dipolar characteristics in the higher order modes. Through visual examination of the dipolar component in surface charge distributions, we qualitatively establish the relative amplitudes of the modes. Our results demonstrate the red-shifting of resonant wavelengths with increased core offset, resulted in the enhanced absorption rather than scattering. This computational study provide a terse depth for the deeper understanding towards the plasmonic behavior in multilayered dimers with core and middle layer shifts, uncovering the underlying mechanisms of symmetry breaking.</description><subject>Applied physics</subject><subject>Asymmetry</subject><subject>Broken symmetry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge distribution</subject><subject>Condensed Matter Physics</subject><subject>Dimers</subject><subject>Dipole moments</subject><subject>Gold</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Processes</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>Surface charge</subject><subject>Surfaces and Interfaces</subject><subject>Symmetry</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcF19GXjybtUga_YMCNrkOapmOGtolJuhh_vXUquPNtwiPnXngHoWsCtwRA3iUAxmoMlGGQhHNcnqAV4YxiEAxO0QpqLnHFanGOLlLawzyc0hUaN34IU9bZ-VH3hQ_ZDe7ruBa-K4apzw4POtvo5u9eH2y0bTHq0bdusLHofFygMMXgky10CL0zx4JUuPGIZms-Rt_73eESnXW6T_bq912j98eHt80z3r4-vWzut9hQCRlL3jUUoNWVIIZYIJ1kQkqoKNGitFzyWshKQNt0pmYtN6K1TWMqkKZtRFuzNbpZekP0n5NNWe39FOcLk6JVXUpBCZczRRfKRJ9StJ0K0Q06HhQB9eNVLV7V7FUdvapyDrEllGZ43Nn4V_1P6hvuQ34x</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jamil, Saqib</creator><creator>Khalil, Usman Khan</creator><creator>Jamil, Saima</creator><creator>Farooq, Waqas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6125-0423</orcidid></search><sort><creationdate>20231201</creationdate><title>Computational optimization of multi-material layered nanodimer for multipurpose applications in nanotechnology</title><author>Jamil, Saqib ; Khalil, Usman Khan ; Jamil, Saima ; Farooq, Waqas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-74fb200da861c1e01f736770821a65e474967860dbfc93d4c6debbc807cdb6d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Asymmetry</topic><topic>Broken symmetry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge distribution</topic><topic>Condensed Matter Physics</topic><topic>Dimers</topic><topic>Dipole moments</topic><topic>Gold</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Processes</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>Surface charge</topic><topic>Surfaces and Interfaces</topic><topic>Symmetry</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamil, Saqib</creatorcontrib><creatorcontrib>Khalil, Usman Khan</creatorcontrib><creatorcontrib>Jamil, Saima</creatorcontrib><creatorcontrib>Farooq, Waqas</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamil, Saqib</au><au>Khalil, Usman Khan</au><au>Jamil, Saima</au><au>Farooq, Waqas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational optimization of multi-material layered nanodimer for multipurpose applications in nanotechnology</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>129</volume><issue>12</issue><artnum>871</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this paper, we use computational methods to investigate the plasmonic properties of multi-layered dimers. These dimers are composed of layers of gold–silica–gold and gold–silica–silver, with shifts in their core and middle layers. This asymmetry breaks the geometrical symmetry, revealing plasmon resonances that are typically invisible in concentric geometries. This study explains the origin of these resonances using plasmon hybridization theory, highlighting the interaction between primitive and multipolar modes in the core and shell of the investigated proposed structure. These interactions improve the coupling of the higher order modes to light by inducing a dipole moment. The asymmetry is attributed to the uneven distribution of surface charges, leading to a transition from multipolar to dipolar characteristics in the higher order modes. Through visual examination of the dipolar component in surface charge distributions, we qualitatively establish the relative amplitudes of the modes. Our results demonstrate the red-shifting of resonant wavelengths with increased core offset, resulted in the enhanced absorption rather than scattering. This computational study provide a terse depth for the deeper understanding towards the plasmonic behavior in multilayered dimers with core and middle layer shifts, uncovering the underlying mechanisms of symmetry breaking.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-07144-5</doi><orcidid>https://orcid.org/0000-0001-6125-0423</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2023-12, Vol.129 (12), Article 871
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2895762147
source Springer Nature
subjects Applied physics
Asymmetry
Broken symmetry
Characterization and Evaluation of Materials
Charge distribution
Condensed Matter Physics
Dimers
Dipole moments
Gold
Machines
Manufacturing
Materials science
Multilayers
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Plasmonics
Plasmons
Processes
Silicon dioxide
Silver
Surface charge
Surfaces and Interfaces
Symmetry
Thin Films
title Computational optimization of multi-material layered nanodimer for multipurpose applications in nanotechnology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20optimization%20of%20multi-material%20layered%20nanodimer%20for%20multipurpose%20applications%20in%20nanotechnology&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Jamil,%20Saqib&rft.date=2023-12-01&rft.volume=129&rft.issue=12&rft.artnum=871&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-07144-5&rft_dat=%3Cproquest_cross%3E2895762147%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-74fb200da861c1e01f736770821a65e474967860dbfc93d4c6debbc807cdb6d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895762147&rft_id=info:pmid/&rfr_iscdi=true