Loading…
A priori and a posteriori error analysis for semilinear problems in liquid crystals
In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in l...
Saved in:
Published in: | ESAIM. Mathematical modelling and numerical analysis 2023-11, Vol.57 (6), p.3201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 6 |
container_start_page | 3201 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 57 |
creator | Maity, Ruma Rani Majumdar, Apala Nataraj, Neela |
description | In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results. |
doi_str_mv | 10.1051/m2an/2023056 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2895823433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895823433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-c1f770f19e667f761452310a367336581485b218294f9db978f2a4eeb12e8a213</originalsourceid><addsrcrecordid>eNotjstqwzAUREWh0DTtrh8g6NqN7r16LkPoCwJdtF0H2ZZAwY9Eshf5-xrS1WEGZjiMPYF4AaFg06MfNiiQhNI3bAXoREVWwh27L-UoBBl0tGLfW37KacyJ-6Hlnp_GMoVrEXIe81L77lJS4XEJJfSpS0PweVmNdRf6wtPAu3SeU8ubfCmT78oDu40LwuM_1-z37fVn91Htv94_d9t91aCyU9VANEZEcEFrE40GqZBAeNKGSCsL0qoawaKT0bW1MzailyHUgMF6BFqz5-vv4nKeQ5kOx3HOi285oHXKIkki-gMPsk8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895823433</pqid></control><display><type>article</type><title>A priori and a posteriori error analysis for semilinear problems in liquid crystals</title><source>Freely Accessible Journals</source><creator>Maity, Ruma Rani ; Majumdar, Apala ; Nataraj, Neela</creator><creatorcontrib>Maity, Ruma Rani ; Majumdar, Apala ; Nataraj, Neela</creatorcontrib><description>In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.</description><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2023056</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Boundary conditions ; Dirichlet problem ; Error analysis ; Estimates ; Exact solutions ; Existence theorems ; Finite element method ; Hilbert space ; Hypotheses ; Liquid crystals ; Mathematics ; Methods ; Nematic crystals ; Partial differential equations</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2023-11, Vol.57 (6), p.3201</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maity, Ruma Rani</creatorcontrib><creatorcontrib>Majumdar, Apala</creatorcontrib><creatorcontrib>Nataraj, Neela</creatorcontrib><title>A priori and a posteriori error analysis for semilinear problems in liquid crystals</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Exact solutions</subject><subject>Existence theorems</subject><subject>Finite element method</subject><subject>Hilbert space</subject><subject>Hypotheses</subject><subject>Liquid crystals</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Nematic crystals</subject><subject>Partial differential equations</subject><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjstqwzAUREWh0DTtrh8g6NqN7r16LkPoCwJdtF0H2ZZAwY9Eshf5-xrS1WEGZjiMPYF4AaFg06MfNiiQhNI3bAXoREVWwh27L-UoBBl0tGLfW37KacyJ-6Hlnp_GMoVrEXIe81L77lJS4XEJJfSpS0PweVmNdRf6wtPAu3SeU8ubfCmT78oDu40LwuM_1-z37fVn91Htv94_d9t91aCyU9VANEZEcEFrE40GqZBAeNKGSCsL0qoawaKT0bW1MzailyHUgMF6BFqz5-vv4nKeQ5kOx3HOi285oHXKIkki-gMPsk8s</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Maity, Ruma Rani</creator><creator>Majumdar, Apala</creator><creator>Nataraj, Neela</creator><general>EDP Sciences</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>A priori and a posteriori error analysis for semilinear problems in liquid crystals</title><author>Maity, Ruma Rani ; Majumdar, Apala ; Nataraj, Neela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-c1f770f19e667f761452310a367336581485b218294f9db978f2a4eeb12e8a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Exact solutions</topic><topic>Existence theorems</topic><topic>Finite element method</topic><topic>Hilbert space</topic><topic>Hypotheses</topic><topic>Liquid crystals</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Nematic crystals</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maity, Ruma Rani</creatorcontrib><creatorcontrib>Majumdar, Apala</creatorcontrib><creatorcontrib>Nataraj, Neela</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maity, Ruma Rani</au><au>Majumdar, Apala</au><au>Nataraj, Neela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A priori and a posteriori error analysis for semilinear problems in liquid crystals</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>57</volume><issue>6</issue><spage>3201</spage><pages>3201-</pages><eissn>1290-3841</eissn><abstract>In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2023056</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1290-3841 |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2023-11, Vol.57 (6), p.3201 |
issn | 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2895823433 |
source | Freely Accessible Journals |
subjects | Approximation Boundary conditions Dirichlet problem Error analysis Estimates Exact solutions Existence theorems Finite element method Hilbert space Hypotheses Liquid crystals Mathematics Methods Nematic crystals Partial differential equations |
title | A priori and a posteriori error analysis for semilinear problems in liquid crystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20priori%20and%20a%20posteriori%20error%20analysis%20for%20semilinear%20problems%20in%20liquid%20crystals&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Maity,%20Ruma%20Rani&rft.date=2023-11-01&rft.volume=57&rft.issue=6&rft.spage=3201&rft.pages=3201-&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2023056&rft_dat=%3Cproquest%3E2895823433%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-c1f770f19e667f761452310a367336581485b218294f9db978f2a4eeb12e8a213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895823433&rft_id=info:pmid/&rfr_iscdi=true |