Loading…

A priori and a posteriori error analysis for semilinear problems in liquid crystals

In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in l...

Full description

Saved in:
Bibliographic Details
Published in:ESAIM. Mathematical modelling and numerical analysis 2023-11, Vol.57 (6), p.3201
Main Authors: Maity, Ruma Rani, Majumdar, Apala, Nataraj, Neela
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 6
container_start_page 3201
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 57
creator Maity, Ruma Rani
Majumdar, Apala
Nataraj, Neela
description In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.
doi_str_mv 10.1051/m2an/2023056
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2895823433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895823433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-c1f770f19e667f761452310a367336581485b218294f9db978f2a4eeb12e8a213</originalsourceid><addsrcrecordid>eNotjstqwzAUREWh0DTtrh8g6NqN7r16LkPoCwJdtF0H2ZZAwY9Eshf5-xrS1WEGZjiMPYF4AaFg06MfNiiQhNI3bAXoREVWwh27L-UoBBl0tGLfW37KacyJ-6Hlnp_GMoVrEXIe81L77lJS4XEJJfSpS0PweVmNdRf6wtPAu3SeU8ubfCmT78oDu40LwuM_1-z37fVn91Htv94_d9t91aCyU9VANEZEcEFrE40GqZBAeNKGSCsL0qoawaKT0bW1MzailyHUgMF6BFqz5-vv4nKeQ5kOx3HOi285oHXKIkki-gMPsk8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895823433</pqid></control><display><type>article</type><title>A priori and a posteriori error analysis for semilinear problems in liquid crystals</title><source>Freely Accessible Journals</source><creator>Maity, Ruma Rani ; Majumdar, Apala ; Nataraj, Neela</creator><creatorcontrib>Maity, Ruma Rani ; Majumdar, Apala ; Nataraj, Neela</creatorcontrib><description>In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.</description><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2023056</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Boundary conditions ; Dirichlet problem ; Error analysis ; Estimates ; Exact solutions ; Existence theorems ; Finite element method ; Hilbert space ; Hypotheses ; Liquid crystals ; Mathematics ; Methods ; Nematic crystals ; Partial differential equations</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2023-11, Vol.57 (6), p.3201</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maity, Ruma Rani</creatorcontrib><creatorcontrib>Majumdar, Apala</creatorcontrib><creatorcontrib>Nataraj, Neela</creatorcontrib><title>A priori and a posteriori error analysis for semilinear problems in liquid crystals</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Exact solutions</subject><subject>Existence theorems</subject><subject>Finite element method</subject><subject>Hilbert space</subject><subject>Hypotheses</subject><subject>Liquid crystals</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Nematic crystals</subject><subject>Partial differential equations</subject><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjstqwzAUREWh0DTtrh8g6NqN7r16LkPoCwJdtF0H2ZZAwY9Eshf5-xrS1WEGZjiMPYF4AaFg06MfNiiQhNI3bAXoREVWwh27L-UoBBl0tGLfW37KacyJ-6Hlnp_GMoVrEXIe81L77lJS4XEJJfSpS0PweVmNdRf6wtPAu3SeU8ubfCmT78oDu40LwuM_1-z37fVn91Htv94_d9t91aCyU9VANEZEcEFrE40GqZBAeNKGSCsL0qoawaKT0bW1MzailyHUgMF6BFqz5-vv4nKeQ5kOx3HOi285oHXKIkki-gMPsk8s</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Maity, Ruma Rani</creator><creator>Majumdar, Apala</creator><creator>Nataraj, Neela</creator><general>EDP Sciences</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>A priori and a posteriori error analysis for semilinear problems in liquid crystals</title><author>Maity, Ruma Rani ; Majumdar, Apala ; Nataraj, Neela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-c1f770f19e667f761452310a367336581485b218294f9db978f2a4eeb12e8a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Exact solutions</topic><topic>Existence theorems</topic><topic>Finite element method</topic><topic>Hilbert space</topic><topic>Hypotheses</topic><topic>Liquid crystals</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Nematic crystals</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maity, Ruma Rani</creatorcontrib><creatorcontrib>Majumdar, Apala</creatorcontrib><creatorcontrib>Nataraj, Neela</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maity, Ruma Rani</au><au>Majumdar, Apala</au><au>Nataraj, Neela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A priori and a posteriori error analysis for semilinear problems in liquid crystals</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>57</volume><issue>6</issue><spage>3201</spage><pages>3201-</pages><eissn>1290-3841</eissn><abstract>In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton–Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2023056</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1290-3841
ispartof ESAIM. Mathematical modelling and numerical analysis, 2023-11, Vol.57 (6), p.3201
issn 1290-3841
language eng
recordid cdi_proquest_journals_2895823433
source Freely Accessible Journals
subjects Approximation
Boundary conditions
Dirichlet problem
Error analysis
Estimates
Exact solutions
Existence theorems
Finite element method
Hilbert space
Hypotheses
Liquid crystals
Mathematics
Methods
Nematic crystals
Partial differential equations
title A priori and a posteriori error analysis for semilinear problems in liquid crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20priori%20and%20a%20posteriori%20error%20analysis%20for%20semilinear%20problems%20in%20liquid%20crystals&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Maity,%20Ruma%20Rani&rft.date=2023-11-01&rft.volume=57&rft.issue=6&rft.spage=3201&rft.pages=3201-&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2023056&rft_dat=%3Cproquest%3E2895823433%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-c1f770f19e667f761452310a367336581485b218294f9db978f2a4eeb12e8a213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895823433&rft_id=info:pmid/&rfr_iscdi=true