Loading…

Finite-temperature properties of PbTiO3 by molecular dynamics simulations

PbTiO 3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-12, Vol.134 (21)
Main Authors: Wang, Jian-Tao, Bu, Kun, Hu, Fengxia, Wang, Jing, Chen, Changfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 134
creator Wang, Jian-Tao
Bu, Kun
Hu, Fengxia
Wang, Jing
Chen, Changfeng
description PbTiO 3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature T c and adiabatic temperature change Δ T of PbTiO 3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field E induces rising T c via a linear relation T c ∝ 0.3083 E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above ∼200 kV/cm; meanwhile, a maximum electrocaloric response Δ T m a x ∼ 34 K is obtained under E = 500 kV/cm. Moreover, external stress ( σ z) causes rising T c via a linear relation T c ∝ 160 σ z and improves the electrocaloric response Δ T m a x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.
doi_str_mv 10.1063/5.0179770
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2895890985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895890985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWyWaTzRylWC0U6qGeQ5pNIKW7W5Psof_ete3Z0zyGjzfzHiGPDGYMJH8VM2A11jVckQkDhUUtBFyTCUDJCoU13pK7lHYAjCmOE7JchC5kV2TXHlw0eYiOHmI_6hxcor2nX9tNWHO6PdK23zs77E2kzbEzbbCJptCOixz6Lt2TG2_2yT1c5pR8L943889itf5Yzt9WhS1VnQsvKmZKz7lomJFGNU6haxAqjkz6BpQEw4xoUHhrqwaElyiF8lhhZaWUfEqezr7jmz-DS1nv-iF240ldKhQKAZUYqeczZWOfUnReH2JoTTxqBvqvKS30pamRfTmzyYZ8CvMP_Atow2fj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895890985</pqid></control><display><type>article</type><title>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Jian-Tao ; Bu, Kun ; Hu, Fengxia ; Wang, Jing ; Chen, Changfeng</creator><creatorcontrib>Wang, Jian-Tao ; Bu, Kun ; Hu, Fengxia ; Wang, Jing ; Chen, Changfeng</creatorcontrib><description>PbTiO 3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature T c and adiabatic temperature change Δ T of PbTiO 3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field E induces rising T c via a linear relation T c ∝ 0.3083 E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above ∼200 kV/cm; meanwhile, a maximum electrocaloric response Δ T m a x ∼ 34 K is obtained under E = 500 kV/cm. Moreover, external stress ( σ z) causes rising T c via a linear relation T c ∝ 160 σ z and improves the electrocaloric response Δ T m a x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0179770</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electric fields ; Ferroelectric materials ; Ferroelectricity ; First principles ; Hysteresis ; Lead titanates ; Molecular dynamics ; Perovskites ; Phase transitions ; Tensile stress ; Transition temperature</subject><ispartof>Journal of applied physics, 2023-12, Vol.134 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663</cites><orcidid>0000-0002-0786-1212 ; 0000-0001-5458-6711 ; 0000-0003-0383-0213 ; 0000-0003-3520-2692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Jian-Tao</creatorcontrib><creatorcontrib>Bu, Kun</creatorcontrib><creatorcontrib>Hu, Fengxia</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><title>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</title><title>Journal of applied physics</title><description>PbTiO 3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature T c and adiabatic temperature change Δ T of PbTiO 3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field E induces rising T c via a linear relation T c ∝ 0.3083 E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above ∼200 kV/cm; meanwhile, a maximum electrocaloric response Δ T m a x ∼ 34 K is obtained under E = 500 kV/cm. Moreover, external stress ( σ z) causes rising T c via a linear relation T c ∝ 160 σ z and improves the electrocaloric response Δ T m a x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.</description><subject>Applied physics</subject><subject>Electric fields</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Hysteresis</subject><subject>Lead titanates</subject><subject>Molecular dynamics</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Tensile stress</subject><subject>Transition temperature</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWyWaTzRylWC0U6qGeQ5pNIKW7W5Psof_ete3Z0zyGjzfzHiGPDGYMJH8VM2A11jVckQkDhUUtBFyTCUDJCoU13pK7lHYAjCmOE7JchC5kV2TXHlw0eYiOHmI_6hxcor2nX9tNWHO6PdK23zs77E2kzbEzbbCJptCOixz6Lt2TG2_2yT1c5pR8L943889itf5Yzt9WhS1VnQsvKmZKz7lomJFGNU6haxAqjkz6BpQEw4xoUHhrqwaElyiF8lhhZaWUfEqezr7jmz-DS1nv-iF240ldKhQKAZUYqeczZWOfUnReH2JoTTxqBvqvKS30pamRfTmzyYZ8CvMP_Atow2fj</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Wang, Jian-Tao</creator><creator>Bu, Kun</creator><creator>Hu, Fengxia</creator><creator>Wang, Jing</creator><creator>Chen, Changfeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0786-1212</orcidid><orcidid>https://orcid.org/0000-0001-5458-6711</orcidid><orcidid>https://orcid.org/0000-0003-0383-0213</orcidid><orcidid>https://orcid.org/0000-0003-3520-2692</orcidid></search><sort><creationdate>20231207</creationdate><title>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</title><author>Wang, Jian-Tao ; Bu, Kun ; Hu, Fengxia ; Wang, Jing ; Chen, Changfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Electric fields</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Hysteresis</topic><topic>Lead titanates</topic><topic>Molecular dynamics</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Tensile stress</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian-Tao</creatorcontrib><creatorcontrib>Bu, Kun</creatorcontrib><creatorcontrib>Hu, Fengxia</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian-Tao</au><au>Bu, Kun</au><au>Hu, Fengxia</au><au>Wang, Jing</au><au>Chen, Changfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2023-12-07</date><risdate>2023</risdate><volume>134</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>PbTiO 3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature T c and adiabatic temperature change Δ T of PbTiO 3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field E induces rising T c via a linear relation T c ∝ 0.3083 E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above ∼200 kV/cm; meanwhile, a maximum electrocaloric response Δ T m a x ∼ 34 K is obtained under E = 500 kV/cm. Moreover, external stress ( σ z) causes rising T c via a linear relation T c ∝ 160 σ z and improves the electrocaloric response Δ T m a x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0179770</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0786-1212</orcidid><orcidid>https://orcid.org/0000-0001-5458-6711</orcidid><orcidid>https://orcid.org/0000-0003-0383-0213</orcidid><orcidid>https://orcid.org/0000-0003-3520-2692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-12, Vol.134 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2895890985
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Electric fields
Ferroelectric materials
Ferroelectricity
First principles
Hysteresis
Lead titanates
Molecular dynamics
Perovskites
Phase transitions
Tensile stress
Transition temperature
title Finite-temperature properties of PbTiO3 by molecular dynamics simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-temperature%20properties%20of%20PbTiO3%20by%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Jian-Tao&rft.date=2023-12-07&rft.volume=134&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0179770&rft_dat=%3Cproquest_scita%3E2895890985%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895890985&rft_id=info:pmid/&rfr_iscdi=true