Loading…
Finite-temperature properties of PbTiO3 by molecular dynamics simulations
PbTiO 3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dy...
Saved in:
Published in: | Journal of applied physics 2023-12, Vol.134 (21) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663 |
container_end_page | |
container_issue | 21 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 134 |
creator | Wang, Jian-Tao Bu, Kun Hu, Fengxia Wang, Jing Chen, Changfeng |
description | PbTiO
3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature
T
c and adiabatic temperature change
Δ
T of
PbTiO
3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field
E induces rising
T
c via a linear relation
T
c
∝ 0.3083
E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above
∼200 kV/cm; meanwhile, a maximum electrocaloric response
Δ
T
m
a
x
∼
34 K is obtained under
E
=
500 kV/cm. Moreover, external stress (
σ
z) causes rising
T
c via a linear relation
T
c
∝
160
σ
z and improves the electrocaloric response
Δ
T
m
a
x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials. |
doi_str_mv | 10.1063/5.0179770 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2895890985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895890985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWyWaTzRylWC0U6qGeQ5pNIKW7W5Psof_ete3Z0zyGjzfzHiGPDGYMJH8VM2A11jVckQkDhUUtBFyTCUDJCoU13pK7lHYAjCmOE7JchC5kV2TXHlw0eYiOHmI_6hxcor2nX9tNWHO6PdK23zs77E2kzbEzbbCJptCOixz6Lt2TG2_2yT1c5pR8L943889itf5Yzt9WhS1VnQsvKmZKz7lomJFGNU6haxAqjkz6BpQEw4xoUHhrqwaElyiF8lhhZaWUfEqezr7jmz-DS1nv-iF240ldKhQKAZUYqeczZWOfUnReH2JoTTxqBvqvKS30pamRfTmzyYZ8CvMP_Atow2fj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895890985</pqid></control><display><type>article</type><title>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Jian-Tao ; Bu, Kun ; Hu, Fengxia ; Wang, Jing ; Chen, Changfeng</creator><creatorcontrib>Wang, Jian-Tao ; Bu, Kun ; Hu, Fengxia ; Wang, Jing ; Chen, Changfeng</creatorcontrib><description>PbTiO
3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature
T
c and adiabatic temperature change
Δ
T of
PbTiO
3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field
E induces rising
T
c via a linear relation
T
c
∝ 0.3083
E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above
∼200 kV/cm; meanwhile, a maximum electrocaloric response
Δ
T
m
a
x
∼
34 K is obtained under
E
=
500 kV/cm. Moreover, external stress (
σ
z) causes rising
T
c via a linear relation
T
c
∝
160
σ
z and improves the electrocaloric response
Δ
T
m
a
x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0179770</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electric fields ; Ferroelectric materials ; Ferroelectricity ; First principles ; Hysteresis ; Lead titanates ; Molecular dynamics ; Perovskites ; Phase transitions ; Tensile stress ; Transition temperature</subject><ispartof>Journal of applied physics, 2023-12, Vol.134 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663</cites><orcidid>0000-0002-0786-1212 ; 0000-0001-5458-6711 ; 0000-0003-0383-0213 ; 0000-0003-3520-2692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Jian-Tao</creatorcontrib><creatorcontrib>Bu, Kun</creatorcontrib><creatorcontrib>Hu, Fengxia</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><title>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</title><title>Journal of applied physics</title><description>PbTiO
3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature
T
c and adiabatic temperature change
Δ
T of
PbTiO
3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field
E induces rising
T
c via a linear relation
T
c
∝ 0.3083
E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above
∼200 kV/cm; meanwhile, a maximum electrocaloric response
Δ
T
m
a
x
∼
34 K is obtained under
E
=
500 kV/cm. Moreover, external stress (
σ
z) causes rising
T
c via a linear relation
T
c
∝
160
σ
z and improves the electrocaloric response
Δ
T
m
a
x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.</description><subject>Applied physics</subject><subject>Electric fields</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Hysteresis</subject><subject>Lead titanates</subject><subject>Molecular dynamics</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Tensile stress</subject><subject>Transition temperature</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWyWaTzRylWC0U6qGeQ5pNIKW7W5Psof_ete3Z0zyGjzfzHiGPDGYMJH8VM2A11jVckQkDhUUtBFyTCUDJCoU13pK7lHYAjCmOE7JchC5kV2TXHlw0eYiOHmI_6hxcor2nX9tNWHO6PdK23zs77E2kzbEzbbCJptCOixz6Lt2TG2_2yT1c5pR8L943889itf5Yzt9WhS1VnQsvKmZKz7lomJFGNU6haxAqjkz6BpQEw4xoUHhrqwaElyiF8lhhZaWUfEqezr7jmz-DS1nv-iF240ldKhQKAZUYqeczZWOfUnReH2JoTTxqBvqvKS30pamRfTmzyYZ8CvMP_Atow2fj</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Wang, Jian-Tao</creator><creator>Bu, Kun</creator><creator>Hu, Fengxia</creator><creator>Wang, Jing</creator><creator>Chen, Changfeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0786-1212</orcidid><orcidid>https://orcid.org/0000-0001-5458-6711</orcidid><orcidid>https://orcid.org/0000-0003-0383-0213</orcidid><orcidid>https://orcid.org/0000-0003-3520-2692</orcidid></search><sort><creationdate>20231207</creationdate><title>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</title><author>Wang, Jian-Tao ; Bu, Kun ; Hu, Fengxia ; Wang, Jing ; Chen, Changfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Electric fields</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Hysteresis</topic><topic>Lead titanates</topic><topic>Molecular dynamics</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Tensile stress</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian-Tao</creatorcontrib><creatorcontrib>Bu, Kun</creatorcontrib><creatorcontrib>Hu, Fengxia</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian-Tao</au><au>Bu, Kun</au><au>Hu, Fengxia</au><au>Wang, Jing</au><au>Chen, Changfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-temperature properties of PbTiO3 by molecular dynamics simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2023-12-07</date><risdate>2023</risdate><volume>134</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>PbTiO
3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature
T
c and adiabatic temperature change
Δ
T of
PbTiO
3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field
E induces rising
T
c via a linear relation
T
c
∝ 0.3083
E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above
∼200 kV/cm; meanwhile, a maximum electrocaloric response
Δ
T
m
a
x
∼
34 K is obtained under
E
=
500 kV/cm. Moreover, external stress (
σ
z) causes rising
T
c via a linear relation
T
c
∝
160
σ
z and improves the electrocaloric response
Δ
T
m
a
x when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0179770</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0786-1212</orcidid><orcidid>https://orcid.org/0000-0001-5458-6711</orcidid><orcidid>https://orcid.org/0000-0003-0383-0213</orcidid><orcidid>https://orcid.org/0000-0003-3520-2692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-12, Vol.134 (21) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2895890985 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Electric fields Ferroelectric materials Ferroelectricity First principles Hysteresis Lead titanates Molecular dynamics Perovskites Phase transitions Tensile stress Transition temperature |
title | Finite-temperature properties of PbTiO3 by molecular dynamics simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-temperature%20properties%20of%20PbTiO3%20by%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Jian-Tao&rft.date=2023-12-07&rft.volume=134&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0179770&rft_dat=%3Cproquest_scita%3E2895890985%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-f541a2f335d1a6a8de89ed9043916fd0860a1a5d95fcc4d05f69658f9494c6663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895890985&rft_id=info:pmid/&rfr_iscdi=true |