Loading…
Consolidating Packet-Level Features for Effective Network Intrusion Detection: A Novel Session-Level Approach
Network Intrusion Detection Systems (NIDSs) are crucial tools for ensuring cyber security. Recently, machine learning-based NIDSs have gained popularity due to their ability to adapt to various anomalies. To enable machine learning techniques, packet-level features have been proposed for packet-leve...
Saved in:
Published in: | IEEE access 2023, Vol.11, p.132792-132810 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-e53b672cc2929a36819726f59dc8c11f12b1d1dfae3da37f5f36b2852a3fb32c3 |
container_end_page | 132810 |
container_issue | |
container_start_page | 132792 |
container_title | IEEE access |
container_volume | 11 |
creator | Miyamoto, Kohei Iida, Masazumi Han, Chansu Ban, Tao Takahashi, Takeshi Takeuchi, Jun'ichi |
description | Network Intrusion Detection Systems (NIDSs) are crucial tools for ensuring cyber security. Recently, machine learning-based NIDSs have gained popularity due to their ability to adapt to various anomalies. To enable machine learning techniques, packet-level features have been proposed for packet-level classification, but this approach may generate an excessive number of security alerts and reduce performance due to irrelevant packets. To address these limitations, this paper proposes a session-level classification approach that consolidates packet-level classification outputs to identify anomalous sessions. The effectiveness of the proposed approach is demonstrated by a prototype system. Experiments on a publicly available benchmark dataset demonstrate the high performance of proposed approach achieving F1-measure exceeding 98%. It also shows that even when we used only a few packets in head parts of each session to obtain session-level predictions, the high F1-measure still could be achieved. This result implies that the proposed approach is also efficient in terms of the number of packets to be processed. These results highlight the promising potential of the proposed approach for adaptive network intrusion detection. |
doi_str_mv | 10.1109/ACCESS.2023.3335600 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2896026999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10325518</ieee_id><doaj_id>oai_doaj_org_article_4315d058776543a78c92e5edae561ba8</doaj_id><sourcerecordid>2896026999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e53b672cc2929a36819726f59dc8c11f12b1d1dfae3da37f5f36b2852a3fb32c3</originalsourceid><addsrcrecordid>eNpNUcFO4zAQjRArgVi-AA6WOKfYHuzY3KpQlkoVu1J3z5bjjCGlxMV2We3fk5BqxVxm9Gbemxm9orhgdMYY1dfzul6s1zNOOcwAQEhKj4pTzqQuQYA8_lKfFOcpbegQaoBEdVq81qFPYdu1Nnf9E_ll3QvmcoXvuCX3aPM-YiI-RLLwHl3u3pE8Yv4b4gtZ9jnuUxd6cod57IX-lszJYxi5a0xj66A03-1isO75e_HN223C80M-K_7cL37XD-Xq549lPV-VDoTOJQpoZMWd45prC1IxXXHphW6dcox5xhvWstZbhNZC5YUH2XAluAXfAHdwViwn3TbYjdnF7tXGfybYznwCIT4ZG3PntmhugImWClVVUtyArZTTHAW2FoVkjVWD1tWkNbzwtseUzSbsYz-cb7jSknKptR6mYJpyMaQU0f_fyqgZbTKTTWa0yRxsGliXE6tDxC8M4EIwBR_Lz45o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896026999</pqid></control><display><type>article</type><title>Consolidating Packet-Level Features for Effective Network Intrusion Detection: A Novel Session-Level Approach</title><source>IEEE Xplore Open Access Journals</source><creator>Miyamoto, Kohei ; Iida, Masazumi ; Han, Chansu ; Ban, Tao ; Takahashi, Takeshi ; Takeuchi, Jun'ichi</creator><creatorcontrib>Miyamoto, Kohei ; Iida, Masazumi ; Han, Chansu ; Ban, Tao ; Takahashi, Takeshi ; Takeuchi, Jun'ichi</creatorcontrib><description>Network Intrusion Detection Systems (NIDSs) are crucial tools for ensuring cyber security. Recently, machine learning-based NIDSs have gained popularity due to their ability to adapt to various anomalies. To enable machine learning techniques, packet-level features have been proposed for packet-level classification, but this approach may generate an excessive number of security alerts and reduce performance due to irrelevant packets. To address these limitations, this paper proposes a session-level classification approach that consolidates packet-level classification outputs to identify anomalous sessions. The effectiveness of the proposed approach is demonstrated by a prototype system. Experiments on a publicly available benchmark dataset demonstrate the high performance of proposed approach achieving F1-measure exceeding 98%. It also shows that even when we used only a few packets in head parts of each session to obtain session-level predictions, the high F1-measure still could be achieved. This result implies that the proposed approach is also efficient in terms of the number of packets to be processed. These results highlight the promising potential of the proposed approach for adaptive network intrusion detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3335600</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Benchmark testing ; Classification ; Cybersecurity ; Feature extraction ; Intrusion detection systems ; Machine learning ; Network intrusion detection ; Network security ; network traffic analysis ; Payloads ; Prototypes ; Real-time systems ; System effectiveness ; Telecommunication traffic</subject><ispartof>IEEE access, 2023, Vol.11, p.132792-132810</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e53b672cc2929a36819726f59dc8c11f12b1d1dfae3da37f5f36b2852a3fb32c3</cites><orcidid>0000-0002-0977-4155 ; 0000-0002-1728-5300 ; 0000-0002-9616-3212 ; 0000-0002-6477-7770 ; 0000-0002-5819-3082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10325518$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Miyamoto, Kohei</creatorcontrib><creatorcontrib>Iida, Masazumi</creatorcontrib><creatorcontrib>Han, Chansu</creatorcontrib><creatorcontrib>Ban, Tao</creatorcontrib><creatorcontrib>Takahashi, Takeshi</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><title>Consolidating Packet-Level Features for Effective Network Intrusion Detection: A Novel Session-Level Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Network Intrusion Detection Systems (NIDSs) are crucial tools for ensuring cyber security. Recently, machine learning-based NIDSs have gained popularity due to their ability to adapt to various anomalies. To enable machine learning techniques, packet-level features have been proposed for packet-level classification, but this approach may generate an excessive number of security alerts and reduce performance due to irrelevant packets. To address these limitations, this paper proposes a session-level classification approach that consolidates packet-level classification outputs to identify anomalous sessions. The effectiveness of the proposed approach is demonstrated by a prototype system. Experiments on a publicly available benchmark dataset demonstrate the high performance of proposed approach achieving F1-measure exceeding 98%. It also shows that even when we used only a few packets in head parts of each session to obtain session-level predictions, the high F1-measure still could be achieved. This result implies that the proposed approach is also efficient in terms of the number of packets to be processed. These results highlight the promising potential of the proposed approach for adaptive network intrusion detection.</description><subject>Anomalies</subject><subject>Benchmark testing</subject><subject>Classification</subject><subject>Cybersecurity</subject><subject>Feature extraction</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Network intrusion detection</subject><subject>Network security</subject><subject>network traffic analysis</subject><subject>Payloads</subject><subject>Prototypes</subject><subject>Real-time systems</subject><subject>System effectiveness</subject><subject>Telecommunication traffic</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO4zAQjRArgVi-AA6WOKfYHuzY3KpQlkoVu1J3z5bjjCGlxMV2We3fk5BqxVxm9Gbemxm9orhgdMYY1dfzul6s1zNOOcwAQEhKj4pTzqQuQYA8_lKfFOcpbegQaoBEdVq81qFPYdu1Nnf9E_ll3QvmcoXvuCX3aPM-YiI-RLLwHl3u3pE8Yv4b4gtZ9jnuUxd6cod57IX-lszJYxi5a0xj66A03-1isO75e_HN223C80M-K_7cL37XD-Xq549lPV-VDoTOJQpoZMWd45prC1IxXXHphW6dcox5xhvWstZbhNZC5YUH2XAluAXfAHdwViwn3TbYjdnF7tXGfybYznwCIT4ZG3PntmhugImWClVVUtyArZTTHAW2FoVkjVWD1tWkNbzwtseUzSbsYz-cb7jSknKptR6mYJpyMaQU0f_fyqgZbTKTTWa0yRxsGliXE6tDxC8M4EIwBR_Lz45o</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Miyamoto, Kohei</creator><creator>Iida, Masazumi</creator><creator>Han, Chansu</creator><creator>Ban, Tao</creator><creator>Takahashi, Takeshi</creator><creator>Takeuchi, Jun'ichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0977-4155</orcidid><orcidid>https://orcid.org/0000-0002-1728-5300</orcidid><orcidid>https://orcid.org/0000-0002-9616-3212</orcidid><orcidid>https://orcid.org/0000-0002-6477-7770</orcidid><orcidid>https://orcid.org/0000-0002-5819-3082</orcidid></search><sort><creationdate>2023</creationdate><title>Consolidating Packet-Level Features for Effective Network Intrusion Detection: A Novel Session-Level Approach</title><author>Miyamoto, Kohei ; Iida, Masazumi ; Han, Chansu ; Ban, Tao ; Takahashi, Takeshi ; Takeuchi, Jun'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e53b672cc2929a36819726f59dc8c11f12b1d1dfae3da37f5f36b2852a3fb32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Benchmark testing</topic><topic>Classification</topic><topic>Cybersecurity</topic><topic>Feature extraction</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Network intrusion detection</topic><topic>Network security</topic><topic>network traffic analysis</topic><topic>Payloads</topic><topic>Prototypes</topic><topic>Real-time systems</topic><topic>System effectiveness</topic><topic>Telecommunication traffic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyamoto, Kohei</creatorcontrib><creatorcontrib>Iida, Masazumi</creatorcontrib><creatorcontrib>Han, Chansu</creatorcontrib><creatorcontrib>Ban, Tao</creatorcontrib><creatorcontrib>Takahashi, Takeshi</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyamoto, Kohei</au><au>Iida, Masazumi</au><au>Han, Chansu</au><au>Ban, Tao</au><au>Takahashi, Takeshi</au><au>Takeuchi, Jun'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consolidating Packet-Level Features for Effective Network Intrusion Detection: A Novel Session-Level Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>132792</spage><epage>132810</epage><pages>132792-132810</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Network Intrusion Detection Systems (NIDSs) are crucial tools for ensuring cyber security. Recently, machine learning-based NIDSs have gained popularity due to their ability to adapt to various anomalies. To enable machine learning techniques, packet-level features have been proposed for packet-level classification, but this approach may generate an excessive number of security alerts and reduce performance due to irrelevant packets. To address these limitations, this paper proposes a session-level classification approach that consolidates packet-level classification outputs to identify anomalous sessions. The effectiveness of the proposed approach is demonstrated by a prototype system. Experiments on a publicly available benchmark dataset demonstrate the high performance of proposed approach achieving F1-measure exceeding 98%. It also shows that even when we used only a few packets in head parts of each session to obtain session-level predictions, the high F1-measure still could be achieved. This result implies that the proposed approach is also efficient in terms of the number of packets to be processed. These results highlight the promising potential of the proposed approach for adaptive network intrusion detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3335600</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0977-4155</orcidid><orcidid>https://orcid.org/0000-0002-1728-5300</orcidid><orcidid>https://orcid.org/0000-0002-9616-3212</orcidid><orcidid>https://orcid.org/0000-0002-6477-7770</orcidid><orcidid>https://orcid.org/0000-0002-5819-3082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.132792-132810 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2896026999 |
source | IEEE Xplore Open Access Journals |
subjects | Anomalies Benchmark testing Classification Cybersecurity Feature extraction Intrusion detection systems Machine learning Network intrusion detection Network security network traffic analysis Payloads Prototypes Real-time systems System effectiveness Telecommunication traffic |
title | Consolidating Packet-Level Features for Effective Network Intrusion Detection: A Novel Session-Level Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consolidating%20Packet-Level%20Features%20for%20Effective%20Network%20Intrusion%20Detection:%20A%20Novel%20Session-Level%20Approach&rft.jtitle=IEEE%20access&rft.au=Miyamoto,%20Kohei&rft.date=2023&rft.volume=11&rft.spage=132792&rft.epage=132810&rft.pages=132792-132810&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3335600&rft_dat=%3Cproquest_ieee_%3E2896026999%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e53b672cc2929a36819726f59dc8c11f12b1d1dfae3da37f5f36b2852a3fb32c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896026999&rft_id=info:pmid/&rft_ieee_id=10325518&rfr_iscdi=true |