Loading…
Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset
Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in hars...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jeon, Yujin Choi, Eunsue Kim, Youngchan Moon, Yunseong Omer, Khalid Heide, Felix Baek, Seung-Hwan |
description | Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2896064126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896064126</sourcerecordid><originalsourceid>FETCH-proquest_journals_28960641263</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScA-lNG6urP-gmKq7l0kZIiUlNUgSf3qI-gNMZvjMiCQiRsTIHmJA0hJZzDnIBRSEScjh3qo4eDUXb0KMz6PULo3aWXnUYsqLfw7Hug3cVva7pSaFhT-dNQzcYMag4I-MbmqDSX6dkvtte1nvWeffoVYhV63pvB6qgXEou8wyk-O96A7GqPLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896064126</pqid></control><display><type>article</type><title>Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset</title><source>Publicly Available Content Database</source><creator>Jeon, Yujin ; Choi, Eunsue ; Kim, Youngchan ; Moon, Yunseong ; Omer, Khalid ; Heide, Felix ; Baek, Seung-Hwan</creator><creatorcontrib>Jeon, Yujin ; Choi, Eunsue ; Kim, Youngchan ; Moon, Yunseong ; Omer, Khalid ; Heide, Felix ; Baek, Seung-Hwan</creatorcontrib><description>Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Circular polarization ; Computer vision ; Datasets ; Polarimetry</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2896064126?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jeon, Yujin</creatorcontrib><creatorcontrib>Choi, Eunsue</creatorcontrib><creatorcontrib>Kim, Youngchan</creatorcontrib><creatorcontrib>Moon, Yunseong</creatorcontrib><creatorcontrib>Omer, Khalid</creatorcontrib><creatorcontrib>Heide, Felix</creatorcontrib><creatorcontrib>Baek, Seung-Hwan</creatorcontrib><title>Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset</title><title>arXiv.org</title><description>Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available.</description><subject>Circular polarization</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Polarimetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScA-lNG6urP-gmKq7l0kZIiUlNUgSf3qI-gNMZvjMiCQiRsTIHmJA0hJZzDnIBRSEScjh3qo4eDUXb0KMz6PULo3aWXnUYsqLfw7Hug3cVva7pSaFhT-dNQzcYMag4I-MbmqDSX6dkvtte1nvWeffoVYhV63pvB6qgXEou8wyk-O96A7GqPLw</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Jeon, Yujin</creator><creator>Choi, Eunsue</creator><creator>Kim, Youngchan</creator><creator>Moon, Yunseong</creator><creator>Omer, Khalid</creator><creator>Heide, Felix</creator><creator>Baek, Seung-Hwan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231130</creationdate><title>Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset</title><author>Jeon, Yujin ; Choi, Eunsue ; Kim, Youngchan ; Moon, Yunseong ; Omer, Khalid ; Heide, Felix ; Baek, Seung-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28960641263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circular polarization</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Polarimetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Yujin</creatorcontrib><creatorcontrib>Choi, Eunsue</creatorcontrib><creatorcontrib>Kim, Youngchan</creatorcontrib><creatorcontrib>Moon, Yunseong</creatorcontrib><creatorcontrib>Omer, Khalid</creatorcontrib><creatorcontrib>Heide, Felix</creatorcontrib><creatorcontrib>Baek, Seung-Hwan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Yujin</au><au>Choi, Eunsue</au><au>Kim, Youngchan</au><au>Moon, Yunseong</au><au>Omer, Khalid</au><au>Heide, Felix</au><au>Baek, Seung-Hwan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset</atitle><jtitle>arXiv.org</jtitle><date>2023-11-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2896064126 |
source | Publicly Available Content Database |
subjects | Circular polarization Computer vision Datasets Polarimetry |
title | Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spectral%20and%20Polarization%20Vision:%20Spectro-polarimetric%20Real-world%20Dataset&rft.jtitle=arXiv.org&rft.au=Jeon,%20Yujin&rft.date=2023-11-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2896064126%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28960641263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896064126&rft_id=info:pmid/&rfr_iscdi=true |