Loading…

Localized Topological Pressure for Random Dynamical Systems

This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber locali...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamical and control systems 2023-10, Vol.29 (4), p.1757-1773
Main Authors: Wang, Yunping, Ji, Yong, Zhao, Cao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33
container_end_page 1773
container_issue 4
container_start_page 1757
container_title Journal of dynamical and control systems
container_volume 29
creator Wang, Yunping
Ji, Yong
Zhao, Cao
description This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.
doi_str_mv 10.1007/s10883-023-09658-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896064773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896064773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59VJsvnCk9RPKChaz2E3H6Wlu6nJllJ_vWlX8OZhmBnmfWeGB6FLDNcYQNwkDFLSEkgOxZkst0dohJmgpeRKHucahCqJINUpOktpCQBKUjlCt9Ng6tXi29liFtZhFeaL3Bdv0aW0ia7wIRbvdWdDW9zvuro9TD92qXdtOkcnvl4ld_Gbx-jz8WE2eS6nr08vk7tpaYiAvqSEcoFxY71UljriGOUV4YxZbPJbxjPiaVUzZRmxTECDG8AVa7xxxlhL6RhdDXvXMXxtXOr1Mmxil09qIhUHXgmxV5FBZWJIKTqv13HR1nGnMeg9JD1A0hmSPkDS22yigyllcTd38W_1P64f5mBqMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896064773</pqid></control><display><type>article</type><title>Localized Topological Pressure for Random Dynamical Systems</title><source>Springer Nature</source><creator>Wang, Yunping ; Ji, Yong ; Zhao, Cao</creator><creatorcontrib>Wang, Yunping ; Ji, Yong ; Zhao, Cao</creatorcontrib><description>This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-023-09658-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Control ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Topology ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2023-10, Vol.29 (4), p.1757-1773</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yunping</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Zhao, Cao</creatorcontrib><title>Localized Topological Pressure for Random Dynamical Systems</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Topology</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59VJsvnCk9RPKChaz2E3H6Wlu6nJllJ_vWlX8OZhmBnmfWeGB6FLDNcYQNwkDFLSEkgOxZkst0dohJmgpeRKHucahCqJINUpOktpCQBKUjlCt9Ng6tXi29liFtZhFeaL3Bdv0aW0ia7wIRbvdWdDW9zvuro9TD92qXdtOkcnvl4ld_Gbx-jz8WE2eS6nr08vk7tpaYiAvqSEcoFxY71UljriGOUV4YxZbPJbxjPiaVUzZRmxTECDG8AVa7xxxlhL6RhdDXvXMXxtXOr1Mmxil09qIhUHXgmxV5FBZWJIKTqv13HR1nGnMeg9JD1A0hmSPkDS22yigyllcTd38W_1P64f5mBqMg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Yunping</creator><creator>Ji, Yong</creator><creator>Zhao, Cao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Localized Topological Pressure for Random Dynamical Systems</title><author>Wang, Yunping ; Ji, Yong ; Zhao, Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Topology</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunping</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Zhao, Cao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunping</au><au>Ji, Yong</au><au>Zhao, Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Topological Pressure for Random Dynamical Systems</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>29</volume><issue>4</issue><spage>1757</spage><epage>1773</epage><pages>1757-1773</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-023-09658-w</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2023-10, Vol.29 (4), p.1757-1773
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_journals_2896064773
source Springer Nature
subjects Calculus of Variations and Optimal Control
Optimization
Control
Dynamical Systems
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Systems Theory
Topology
Vibration
title Localized Topological Pressure for Random Dynamical Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Topological%20Pressure%20for%20Random%20Dynamical%20Systems&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Wang,%20Yunping&rft.date=2023-10-01&rft.volume=29&rft.issue=4&rft.spage=1757&rft.epage=1773&rft.pages=1757-1773&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-023-09658-w&rft_dat=%3Cproquest_cross%3E2896064773%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896064773&rft_id=info:pmid/&rfr_iscdi=true