Loading…
Localized Topological Pressure for Random Dynamical Systems
This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber locali...
Saved in:
Published in: | Journal of dynamical and control systems 2023-10, Vol.29 (4), p.1757-1773 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33 |
container_end_page | 1773 |
container_issue | 4 |
container_start_page | 1757 |
container_title | Journal of dynamical and control systems |
container_volume | 29 |
creator | Wang, Yunping Ji, Yong Zhao, Cao |
description | This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure. |
doi_str_mv | 10.1007/s10883-023-09658-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896064773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896064773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59VJsvnCk9RPKChaz2E3H6Wlu6nJllJ_vWlX8OZhmBnmfWeGB6FLDNcYQNwkDFLSEkgOxZkst0dohJmgpeRKHucahCqJINUpOktpCQBKUjlCt9Ng6tXi29liFtZhFeaL3Bdv0aW0ia7wIRbvdWdDW9zvuro9TD92qXdtOkcnvl4ld_Gbx-jz8WE2eS6nr08vk7tpaYiAvqSEcoFxY71UljriGOUV4YxZbPJbxjPiaVUzZRmxTECDG8AVa7xxxlhL6RhdDXvXMXxtXOr1Mmxil09qIhUHXgmxV5FBZWJIKTqv13HR1nGnMeg9JD1A0hmSPkDS22yigyllcTd38W_1P64f5mBqMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896064773</pqid></control><display><type>article</type><title>Localized Topological Pressure for Random Dynamical Systems</title><source>Springer Nature</source><creator>Wang, Yunping ; Ji, Yong ; Zhao, Cao</creator><creatorcontrib>Wang, Yunping ; Ji, Yong ; Zhao, Cao</creatorcontrib><description>This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-023-09658-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Control ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Topology ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2023-10, Vol.29 (4), p.1757-1773</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yunping</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Zhao, Cao</creatorcontrib><title>Localized Topological Pressure for Random Dynamical Systems</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Topology</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59VJsvnCk9RPKChaz2E3H6Wlu6nJllJ_vWlX8OZhmBnmfWeGB6FLDNcYQNwkDFLSEkgOxZkst0dohJmgpeRKHucahCqJINUpOktpCQBKUjlCt9Ng6tXi29liFtZhFeaL3Bdv0aW0ia7wIRbvdWdDW9zvuro9TD92qXdtOkcnvl4ld_Gbx-jz8WE2eS6nr08vk7tpaYiAvqSEcoFxY71UljriGOUV4YxZbPJbxjPiaVUzZRmxTECDG8AVa7xxxlhL6RhdDXvXMXxtXOr1Mmxil09qIhUHXgmxV5FBZWJIKTqv13HR1nGnMeg9JD1A0hmSPkDS22yigyllcTd38W_1P64f5mBqMg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Yunping</creator><creator>Ji, Yong</creator><creator>Zhao, Cao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Localized Topological Pressure for Random Dynamical Systems</title><author>Wang, Yunping ; Ji, Yong ; Zhao, Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Topology</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunping</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Zhao, Cao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunping</au><au>Ji, Yong</au><au>Zhao, Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Topological Pressure for Random Dynamical Systems</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>29</volume><issue>4</issue><spage>1757</spage><epage>1773</epage><pages>1757-1773</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-023-09658-w</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-2724 |
ispartof | Journal of dynamical and control systems, 2023-10, Vol.29 (4), p.1757-1773 |
issn | 1079-2724 1573-8698 |
language | eng |
recordid | cdi_proquest_journals_2896064773 |
source | Springer Nature |
subjects | Calculus of Variations and Optimal Control Optimization Control Dynamical Systems Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics Systems Theory Topology Vibration |
title | Localized Topological Pressure for Random Dynamical Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Topological%20Pressure%20for%20Random%20Dynamical%20Systems&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Wang,%20Yunping&rft.date=2023-10-01&rft.volume=29&rft.issue=4&rft.spage=1757&rft.epage=1773&rft.pages=1757-1773&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-023-09658-w&rft_dat=%3Cproquest_cross%3E2896064773%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-3236711bdf89d3e2e53642655d1c107cf52f34a59d52d570b1b0145bfceccdd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896064773&rft_id=info:pmid/&rfr_iscdi=true |