Loading…
Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space -- Transformer Ensemble Models Tackling Deception and Persuasion
In this paper, we highlight our approach for the "Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023". We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mangalvedhekar, Sudeep Deshpande, Kshitij Patwardhan, Yash Deshpande, Vedant Murumkar, Ravindra |
description | In this paper, we highlight our approach for the "Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023". We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion techniques and disinformation has become imperative to avoid distortion of authentic information. The tasks use multigenre snippets of tweets and news articles for the given binary classification problem. We experiment with several transformer-based models that were pre-trained on the Arabic language. We fine-tune these state-of-the-art models on the provided dataset. Ensembling is employed to enhance the performance of the systems. We achieved a micro F1-score of 0.742 on task 1-A (8th rank on the leaderboard) and 0.901 on task 2-A (7th rank on the leaderboard) respectively. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2896065155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896065155</sourcerecordid><originalsourceid>FETCH-proquest_journals_28960651553</originalsourceid><addsrcrecordid>eNqNjsFqwkAURYeCoKj_8MB1IE5MtO6kRtqFUEj28kxe7JhxJr6X6Lp_3in0A7q6XM7hcl_URCfJMtqstB6rucg1jmOdrXWaJhP1fcQHsalaAexhx7uP_IEWii9kqqFEabdQ-idyHQQosCGGvbmY_lfqsCKIIigZnTSebwHmTuh2tgRHX5OVMFG11rgL7KmirjfeAboaPollQAl1pkYNWqH5X07V4pCXb-9Rx_4-kPSnqx_YBXTSm9csztJleP4_6wczX09n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896065155</pqid></control><display><type>article</type><title>Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space -- Transformer Ensemble Models Tackling Deception and Persuasion</title><source>Publicly Available Content Database</source><creator>Mangalvedhekar, Sudeep ; Deshpande, Kshitij ; Patwardhan, Yash ; Deshpande, Vedant ; Murumkar, Ravindra</creator><creatorcontrib>Mangalvedhekar, Sudeep ; Deshpande, Kshitij ; Patwardhan, Yash ; Deshpande, Vedant ; Murumkar, Ravindra</creatorcontrib><description>In this paper, we highlight our approach for the "Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023". We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion techniques and disinformation has become imperative to avoid distortion of authentic information. The tasks use multigenre snippets of tweets and news articles for the given binary classification problem. We experiment with several transformer-based models that were pre-trained on the Arabic language. We fine-tune these state-of-the-art models on the provided dataset. Ensembling is employed to enhance the performance of the systems. We achieved a micro F1-score of 0.742 on task 1-A (8th rank on the leaderboard) and 0.901 on task 2-A (7th rank on the leaderboard) respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Transformers</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2896065155?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Mangalvedhekar, Sudeep</creatorcontrib><creatorcontrib>Deshpande, Kshitij</creatorcontrib><creatorcontrib>Patwardhan, Yash</creatorcontrib><creatorcontrib>Deshpande, Vedant</creatorcontrib><creatorcontrib>Murumkar, Ravindra</creatorcontrib><title>Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space -- Transformer Ensemble Models Tackling Deception and Persuasion</title><title>arXiv.org</title><description>In this paper, we highlight our approach for the "Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023". We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion techniques and disinformation has become imperative to avoid distortion of authentic information. The tasks use multigenre snippets of tweets and news articles for the given binary classification problem. We experiment with several transformer-based models that were pre-trained on the Arabic language. We fine-tune these state-of-the-art models on the provided dataset. Ensembling is employed to enhance the performance of the systems. We achieved a micro F1-score of 0.742 on task 1-A (8th rank on the leaderboard) and 0.901 on task 2-A (7th rank on the leaderboard) respectively.</description><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjsFqwkAURYeCoKj_8MB1IE5MtO6kRtqFUEj28kxe7JhxJr6X6Lp_3in0A7q6XM7hcl_URCfJMtqstB6rucg1jmOdrXWaJhP1fcQHsalaAexhx7uP_IEWii9kqqFEabdQ-idyHQQosCGGvbmY_lfqsCKIIigZnTSebwHmTuh2tgRHX5OVMFG11rgL7KmirjfeAboaPollQAl1pkYNWqH5X07V4pCXb-9Rx_4-kPSnqx_YBXTSm9csztJleP4_6wczX09n</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Mangalvedhekar, Sudeep</creator><creator>Deshpande, Kshitij</creator><creator>Patwardhan, Yash</creator><creator>Deshpande, Vedant</creator><creator>Murumkar, Ravindra</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231130</creationdate><title>Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space -- Transformer Ensemble Models Tackling Deception and Persuasion</title><author>Mangalvedhekar, Sudeep ; Deshpande, Kshitij ; Patwardhan, Yash ; Deshpande, Vedant ; Murumkar, Ravindra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28960651553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Mangalvedhekar, Sudeep</creatorcontrib><creatorcontrib>Deshpande, Kshitij</creatorcontrib><creatorcontrib>Patwardhan, Yash</creatorcontrib><creatorcontrib>Deshpande, Vedant</creatorcontrib><creatorcontrib>Murumkar, Ravindra</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangalvedhekar, Sudeep</au><au>Deshpande, Kshitij</au><au>Patwardhan, Yash</au><au>Deshpande, Vedant</au><au>Murumkar, Ravindra</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space -- Transformer Ensemble Models Tackling Deception and Persuasion</atitle><jtitle>arXiv.org</jtitle><date>2023-11-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we highlight our approach for the "Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023". We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion techniques and disinformation has become imperative to avoid distortion of authentic information. The tasks use multigenre snippets of tweets and news articles for the given binary classification problem. We experiment with several transformer-based models that were pre-trained on the Arabic language. We fine-tune these state-of-the-art models on the provided dataset. Ensembling is employed to enhance the performance of the systems. We achieved a micro F1-score of 0.742 on task 1-A (8th rank on the leaderboard) and 0.901 on task 2-A (7th rank on the leaderboard) respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2896065155 |
source | Publicly Available Content Database |
subjects | Transformers |
title | Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space -- Transformer Ensemble Models Tackling Deception and Persuasion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mavericks%20at%20ArAIEval%20Shared%20Task:%20Towards%20a%20Safer%20Digital%20Space%20--%20Transformer%20Ensemble%20Models%20Tackling%20Deception%20and%20Persuasion&rft.jtitle=arXiv.org&rft.au=Mangalvedhekar,%20Sudeep&rft.date=2023-11-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2896065155%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28960651553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896065155&rft_id=info:pmid/&rfr_iscdi=true |