Loading…

Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review

The electrification of vehicle powertrains and the expected engineering labor shortage are ongoing key challenges in the gear transmission development. Because traditional methods reach limits, the solution is further automating the design process while enabling flexible and optimal design solutions...

Full description

Saved in:
Bibliographic Details
Published in:Forschung im Ingenieurwesen 2023-12, Vol.87 (4), p.1333-1346
Main Authors: Sendlbeck, Stefan, Maurer, Matthias, Otto, Michael, Stahl, Karsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-54476a35f21cedddb2e09a2028bb5d64b2ee6ef127e385833340bd4e0551ec9d3
container_end_page 1346
container_issue 4
container_start_page 1333
container_title Forschung im Ingenieurwesen
container_volume 87
creator Sendlbeck, Stefan
Maurer, Matthias
Otto, Michael
Stahl, Karsten
description The electrification of vehicle powertrains and the expected engineering labor shortage are ongoing key challenges in the gear transmission development. Because traditional methods reach limits, the solution is further automating the design process while enabling flexible and optimal design solutions even with rapidly changing constraints and requirements. We therefore review the current design process, review state-of-the-art methods for automated gear transmission design, and evaluate their potential and the challenges in combination with using machine learning methods. In focus are grammars and graph grammars in particular, which offer an approach to represent and generate the relational structure of transmission topologies or shaft arrangements. Other potential approaches are knowledge-based engineering, which allows to choose various predefined expert design solution and combine them to new designs, and constraint programming for gear transmission generation. Combining these methods with latest advances in reinforcement learning, machine learning for inverse problem-solving, and graph neural networks offers promising capabilities for automatic topology generation and dimensioning of gear transmissions.
doi_str_mv 10.1007/s10010-023-00699-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896072965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896072965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-54476a35f21cedddb2e09a2028bb5d64b2ee6ef127e385833340bd4e0551ec9d3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaWWAf8iJN4iSpeUiVYwNpy4knjKnGKnbbqjkNwAM7CUTgJLkFix2ZGo_kf0ofQOSWXlJD8KsRJSUIYTwjJpEx2B2hCU54mpMjIIZrEt0jyQspjdBLCcn9KyibIP_UDuMHqNmDtDK4a3bbgFhCwdRhco11l3QIPDeAFaI8Hr13obAi2d9jABtp-1cUEvLVDgztdNdYBbqPU7X0dDE1vwtfbu_788LCxsD1FR3Wsg7PfPUUvtzfPs_tk_nj3MLueJxWn6ZCINM0zzUXNaAXGmJIBkZoRVpSlMFkab8igpiwHXoiCc56S0qRAhKBQScOn6GLMXfn-dQ1hUMt-7V2sVKyQGcmZzERUsVFV-T4ED7Vaedtpv1OUqD1bNbJVka36Yat20cRHU4jiCMv_Rf_j-gZDU4Eo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896072965</pqid></control><display><type>article</type><title>Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review</title><source>Springer Nature</source><creator>Sendlbeck, Stefan ; Maurer, Matthias ; Otto, Michael ; Stahl, Karsten</creator><creatorcontrib>Sendlbeck, Stefan ; Maurer, Matthias ; Otto, Michael ; Stahl, Karsten</creatorcontrib><description>The electrification of vehicle powertrains and the expected engineering labor shortage are ongoing key challenges in the gear transmission development. Because traditional methods reach limits, the solution is further automating the design process while enabling flexible and optimal design solutions even with rapidly changing constraints and requirements. We therefore review the current design process, review state-of-the-art methods for automated gear transmission design, and evaluate their potential and the challenges in combination with using machine learning methods. In focus are grammars and graph grammars in particular, which offer an approach to represent and generate the relational structure of transmission topologies or shaft arrangements. Other potential approaches are knowledge-based engineering, which allows to choose various predefined expert design solution and combine them to new designs, and constraint programming for gear transmission generation. Combining these methods with latest advances in reinforcement learning, machine learning for inverse problem-solving, and graph neural networks offers promising capabilities for automatic topology generation and dimensioning of gear transmissions.</description><identifier>ISSN: 0015-7899</identifier><identifier>EISSN: 1434-0860</identifier><identifier>DOI: 10.1007/s10010-023-00699-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automation ; Engineering ; Graph grammars ; Graph neural networks ; Inverse problems ; Knowledge based engineering ; Machine learning ; Mechanical Engineering ; Powertrain ; Problem solving ; State-of-the-art reviews ; Topology ; Übersichtsarbeiten/Review articles</subject><ispartof>Forschung im Ingenieurwesen, 2023-12, Vol.87 (4), p.1333-1346</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-54476a35f21cedddb2e09a2028bb5d64b2ee6ef127e385833340bd4e0551ec9d3</cites><orcidid>0000-0001-6724-2635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sendlbeck, Stefan</creatorcontrib><creatorcontrib>Maurer, Matthias</creatorcontrib><creatorcontrib>Otto, Michael</creatorcontrib><creatorcontrib>Stahl, Karsten</creatorcontrib><title>Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review</title><title>Forschung im Ingenieurwesen</title><addtitle>Forsch Ingenieurwes</addtitle><description>The electrification of vehicle powertrains and the expected engineering labor shortage are ongoing key challenges in the gear transmission development. Because traditional methods reach limits, the solution is further automating the design process while enabling flexible and optimal design solutions even with rapidly changing constraints and requirements. We therefore review the current design process, review state-of-the-art methods for automated gear transmission design, and evaluate their potential and the challenges in combination with using machine learning methods. In focus are grammars and graph grammars in particular, which offer an approach to represent and generate the relational structure of transmission topologies or shaft arrangements. Other potential approaches are knowledge-based engineering, which allows to choose various predefined expert design solution and combine them to new designs, and constraint programming for gear transmission generation. Combining these methods with latest advances in reinforcement learning, machine learning for inverse problem-solving, and graph neural networks offers promising capabilities for automatic topology generation and dimensioning of gear transmissions.</description><subject>Automation</subject><subject>Engineering</subject><subject>Graph grammars</subject><subject>Graph neural networks</subject><subject>Inverse problems</subject><subject>Knowledge based engineering</subject><subject>Machine learning</subject><subject>Mechanical Engineering</subject><subject>Powertrain</subject><subject>Problem solving</subject><subject>State-of-the-art reviews</subject><subject>Topology</subject><subject>Übersichtsarbeiten/Review articles</subject><issn>0015-7899</issn><issn>1434-0860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaWWAf8iJN4iSpeUiVYwNpy4knjKnGKnbbqjkNwAM7CUTgJLkFix2ZGo_kf0ofQOSWXlJD8KsRJSUIYTwjJpEx2B2hCU54mpMjIIZrEt0jyQspjdBLCcn9KyibIP_UDuMHqNmDtDK4a3bbgFhCwdRhco11l3QIPDeAFaI8Hr13obAi2d9jABtp-1cUEvLVDgztdNdYBbqPU7X0dDE1vwtfbu_788LCxsD1FR3Wsg7PfPUUvtzfPs_tk_nj3MLueJxWn6ZCINM0zzUXNaAXGmJIBkZoRVpSlMFkab8igpiwHXoiCc56S0qRAhKBQScOn6GLMXfn-dQ1hUMt-7V2sVKyQGcmZzERUsVFV-T4ED7Vaedtpv1OUqD1bNbJVka36Yat20cRHU4jiCMv_Rf_j-gZDU4Eo</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Sendlbeck, Stefan</creator><creator>Maurer, Matthias</creator><creator>Otto, Michael</creator><creator>Stahl, Karsten</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6724-2635</orcidid></search><sort><creationdate>20231201</creationdate><title>Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review</title><author>Sendlbeck, Stefan ; Maurer, Matthias ; Otto, Michael ; Stahl, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-54476a35f21cedddb2e09a2028bb5d64b2ee6ef127e385833340bd4e0551ec9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Engineering</topic><topic>Graph grammars</topic><topic>Graph neural networks</topic><topic>Inverse problems</topic><topic>Knowledge based engineering</topic><topic>Machine learning</topic><topic>Mechanical Engineering</topic><topic>Powertrain</topic><topic>Problem solving</topic><topic>State-of-the-art reviews</topic><topic>Topology</topic><topic>Übersichtsarbeiten/Review articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sendlbeck, Stefan</creatorcontrib><creatorcontrib>Maurer, Matthias</creatorcontrib><creatorcontrib>Otto, Michael</creatorcontrib><creatorcontrib>Stahl, Karsten</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Forschung im Ingenieurwesen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sendlbeck, Stefan</au><au>Maurer, Matthias</au><au>Otto, Michael</au><au>Stahl, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review</atitle><jtitle>Forschung im Ingenieurwesen</jtitle><stitle>Forsch Ingenieurwes</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>87</volume><issue>4</issue><spage>1333</spage><epage>1346</epage><pages>1333-1346</pages><issn>0015-7899</issn><eissn>1434-0860</eissn><abstract>The electrification of vehicle powertrains and the expected engineering labor shortage are ongoing key challenges in the gear transmission development. Because traditional methods reach limits, the solution is further automating the design process while enabling flexible and optimal design solutions even with rapidly changing constraints and requirements. We therefore review the current design process, review state-of-the-art methods for automated gear transmission design, and evaluate their potential and the challenges in combination with using machine learning methods. In focus are grammars and graph grammars in particular, which offer an approach to represent and generate the relational structure of transmission topologies or shaft arrangements. Other potential approaches are knowledge-based engineering, which allows to choose various predefined expert design solution and combine them to new designs, and constraint programming for gear transmission generation. Combining these methods with latest advances in reinforcement learning, machine learning for inverse problem-solving, and graph neural networks offers promising capabilities for automatic topology generation and dimensioning of gear transmissions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10010-023-00699-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6724-2635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0015-7899
ispartof Forschung im Ingenieurwesen, 2023-12, Vol.87 (4), p.1333-1346
issn 0015-7899
1434-0860
language eng
recordid cdi_proquest_journals_2896072965
source Springer Nature
subjects Automation
Engineering
Graph grammars
Graph neural networks
Inverse problems
Knowledge based engineering
Machine learning
Mechanical Engineering
Powertrain
Problem solving
State-of-the-art reviews
Topology
Übersichtsarbeiten/Review articles
title Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potentials%20and%20challenges%20in%20enhancing%20the%20gear%20transmission%20development%20with%20machine%20learning%20methods%E2%80%94a%C2%A0review&rft.jtitle=Forschung%20im%20Ingenieurwesen&rft.au=Sendlbeck,%20Stefan&rft.date=2023-12-01&rft.volume=87&rft.issue=4&rft.spage=1333&rft.epage=1346&rft.pages=1333-1346&rft.issn=0015-7899&rft.eissn=1434-0860&rft_id=info:doi/10.1007/s10010-023-00699-y&rft_dat=%3Cproquest_cross%3E2896072965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-54476a35f21cedddb2e09a2028bb5d64b2ee6ef127e385833340bd4e0551ec9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896072965&rft_id=info:pmid/&rfr_iscdi=true