Loading…

Automatic point cloud segmentation using RANSAC and DBSCAN algorithm for indoor model

Indoor modeling is a crucial aspect of architecture, engineering, and construction (AEC) projects. While terrestrial laser scanners (TLS) are the most popular tool for acquiring indoor geometry, processing point clouds from TLS scans with manual methods can be inefficient and error-prone. This study...

Full description

Saved in:
Bibliographic Details
Published in:Telkomnika 2023-12, Vol.21 (6), p.1317-1325
Main Authors: Harintaka, Harintaka, Wijaya, Calvin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1325
container_issue 6
container_start_page 1317
container_title Telkomnika
container_volume 21
creator Harintaka, Harintaka
Wijaya, Calvin
description Indoor modeling is a crucial aspect of architecture, engineering, and construction (AEC) projects. While terrestrial laser scanners (TLS) are the most popular tool for acquiring indoor geometry, processing point clouds from TLS scans with manual methods can be inefficient and error-prone. This study proposes a machine learning algorithm to automatically segment point clouds acquired by low-cost TLS. Random sample consensus (RANSAC), a simple yet effective algorithm for segmenting planar surfaces such as walls, ceilings, and floors, is used in the segmentation process. The resulting segmentation is then refined using density-based spatial clustering of application with noise (DBSCAN) to group nearby points that were not segmented correctly by RANSAC into the appropriate segment. The result is a segmented point cloud consisting of five indoor elements: wall, ceiling, floor, column, and interior. The algorithms were found to be effective for segmenting small and simple rooms. For larger or more complex rooms, segmentation can be performed by dividing the room into several parts and applying the algorithms to each partition. Overall, the study demonstrates the potential of machine learning algorithms for automating point cloud segmentation tasks in indoor modeling, especially for low-cost TLS scans.
doi_str_mv 10.12928/telkomnika.v21i6.25299
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2897069673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897069673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1959-e0b8de7db7175620bc62d7f858c2a796d4a09afed5d25cfaad5bcc07fc6265043</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoOOaewYDXnWm6JM1lrTqFMcG565Am6czWJjNJBd_esgkeOPzw83EOfADc5mieY47L-2S6g--dPcj5N84tnWOCOb8AE1wgnHHMi0swySkvsnHRNZjFuEfjMIQJLydgWw3J9zJZBY_eugRV5wcNo9n1xqWx9w4O0bodfK_Wm6qG0mn4-LCpqzWU3c4Hmz572PoArdN-jN5r092Aq1Z20cz-cgq2z08f9Uu2elu-1tUqUzknPDOoKbVhumE5IxSjRlGsWVuSUmHJONULibhsjSYaE9VKqUmjFGLtyFGCFsUU3J3vHoP_GkxMYu-H4MaXApecIcopK0aKnSkVfIzBtOIYbC_Dj8iROGkU_xrFSaM4aSx-ATYZahc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897069673</pqid></control><display><type>article</type><title>Automatic point cloud segmentation using RANSAC and DBSCAN algorithm for indoor model</title><source>Publicly Available Content Database</source><creator>Harintaka, Harintaka ; Wijaya, Calvin</creator><creatorcontrib>Harintaka, Harintaka ; Wijaya, Calvin</creatorcontrib><description>Indoor modeling is a crucial aspect of architecture, engineering, and construction (AEC) projects. While terrestrial laser scanners (TLS) are the most popular tool for acquiring indoor geometry, processing point clouds from TLS scans with manual methods can be inefficient and error-prone. This study proposes a machine learning algorithm to automatically segment point clouds acquired by low-cost TLS. Random sample consensus (RANSAC), a simple yet effective algorithm for segmenting planar surfaces such as walls, ceilings, and floors, is used in the segmentation process. The resulting segmentation is then refined using density-based spatial clustering of application with noise (DBSCAN) to group nearby points that were not segmented correctly by RANSAC into the appropriate segment. The result is a segmented point cloud consisting of five indoor elements: wall, ceiling, floor, column, and interior. The algorithms were found to be effective for segmenting small and simple rooms. For larger or more complex rooms, segmentation can be performed by dividing the room into several parts and applying the algorithms to each partition. Overall, the study demonstrates the potential of machine learning algorithms for automating point cloud segmentation tasks in indoor modeling, especially for low-cost TLS scans.</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v21i6.25299</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Algorithms ; Architecture ; Automation ; Building information modeling ; Ceilings ; Clustering ; Error analysis ; Floors ; Geometry ; Image segmentation ; Lasers ; Low cost ; Machine learning ; Modelling ; Noise ; Photogrammetry ; Urban areas</subject><ispartof>Telkomnika, 2023-12, Vol.21 (6), p.1317-1325</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2897069673/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2897069673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Harintaka, Harintaka</creatorcontrib><creatorcontrib>Wijaya, Calvin</creatorcontrib><title>Automatic point cloud segmentation using RANSAC and DBSCAN algorithm for indoor model</title><title>Telkomnika</title><description>Indoor modeling is a crucial aspect of architecture, engineering, and construction (AEC) projects. While terrestrial laser scanners (TLS) are the most popular tool for acquiring indoor geometry, processing point clouds from TLS scans with manual methods can be inefficient and error-prone. This study proposes a machine learning algorithm to automatically segment point clouds acquired by low-cost TLS. Random sample consensus (RANSAC), a simple yet effective algorithm for segmenting planar surfaces such as walls, ceilings, and floors, is used in the segmentation process. The resulting segmentation is then refined using density-based spatial clustering of application with noise (DBSCAN) to group nearby points that were not segmented correctly by RANSAC into the appropriate segment. The result is a segmented point cloud consisting of five indoor elements: wall, ceiling, floor, column, and interior. The algorithms were found to be effective for segmenting small and simple rooms. For larger or more complex rooms, segmentation can be performed by dividing the room into several parts and applying the algorithms to each partition. Overall, the study demonstrates the potential of machine learning algorithms for automating point cloud segmentation tasks in indoor modeling, especially for low-cost TLS scans.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Automation</subject><subject>Building information modeling</subject><subject>Ceilings</subject><subject>Clustering</subject><subject>Error analysis</subject><subject>Floors</subject><subject>Geometry</subject><subject>Image segmentation</subject><subject>Lasers</subject><subject>Low cost</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Noise</subject><subject>Photogrammetry</subject><subject>Urban areas</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFkNFKwzAUhoMoOOaewYDXnWm6JM1lrTqFMcG565Am6czWJjNJBd_esgkeOPzw83EOfADc5mieY47L-2S6g--dPcj5N84tnWOCOb8AE1wgnHHMi0swySkvsnHRNZjFuEfjMIQJLydgWw3J9zJZBY_eugRV5wcNo9n1xqWx9w4O0bodfK_Wm6qG0mn4-LCpqzWU3c4Hmz572PoArdN-jN5r092Aq1Z20cz-cgq2z08f9Uu2elu-1tUqUzknPDOoKbVhumE5IxSjRlGsWVuSUmHJONULibhsjSYaE9VKqUmjFGLtyFGCFsUU3J3vHoP_GkxMYu-H4MaXApecIcopK0aKnSkVfIzBtOIYbC_Dj8iROGkU_xrFSaM4aSx-ATYZahc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Harintaka, Harintaka</creator><creator>Wijaya, Calvin</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231201</creationdate><title>Automatic point cloud segmentation using RANSAC and DBSCAN algorithm for indoor model</title><author>Harintaka, Harintaka ; Wijaya, Calvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1959-e0b8de7db7175620bc62d7f858c2a796d4a09afed5d25cfaad5bcc07fc6265043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Automation</topic><topic>Building information modeling</topic><topic>Ceilings</topic><topic>Clustering</topic><topic>Error analysis</topic><topic>Floors</topic><topic>Geometry</topic><topic>Image segmentation</topic><topic>Lasers</topic><topic>Low cost</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Noise</topic><topic>Photogrammetry</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harintaka, Harintaka</creatorcontrib><creatorcontrib>Wijaya, Calvin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harintaka, Harintaka</au><au>Wijaya, Calvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic point cloud segmentation using RANSAC and DBSCAN algorithm for indoor model</atitle><jtitle>Telkomnika</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>21</volume><issue>6</issue><spage>1317</spage><epage>1325</epage><pages>1317-1325</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>Indoor modeling is a crucial aspect of architecture, engineering, and construction (AEC) projects. While terrestrial laser scanners (TLS) are the most popular tool for acquiring indoor geometry, processing point clouds from TLS scans with manual methods can be inefficient and error-prone. This study proposes a machine learning algorithm to automatically segment point clouds acquired by low-cost TLS. Random sample consensus (RANSAC), a simple yet effective algorithm for segmenting planar surfaces such as walls, ceilings, and floors, is used in the segmentation process. The resulting segmentation is then refined using density-based spatial clustering of application with noise (DBSCAN) to group nearby points that were not segmented correctly by RANSAC into the appropriate segment. The result is a segmented point cloud consisting of five indoor elements: wall, ceiling, floor, column, and interior. The algorithms were found to be effective for segmenting small and simple rooms. For larger or more complex rooms, segmentation can be performed by dividing the room into several parts and applying the algorithms to each partition. Overall, the study demonstrates the potential of machine learning algorithms for automating point cloud segmentation tasks in indoor modeling, especially for low-cost TLS scans.</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v21i6.25299</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1693-6930
ispartof Telkomnika, 2023-12, Vol.21 (6), p.1317-1325
issn 1693-6930
2302-9293
language eng
recordid cdi_proquest_journals_2897069673
source Publicly Available Content Database
subjects Algorithms
Architecture
Automation
Building information modeling
Ceilings
Clustering
Error analysis
Floors
Geometry
Image segmentation
Lasers
Low cost
Machine learning
Modelling
Noise
Photogrammetry
Urban areas
title Automatic point cloud segmentation using RANSAC and DBSCAN algorithm for indoor model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20point%20cloud%20segmentation%20using%20RANSAC%20and%20DBSCAN%20algorithm%20for%20indoor%20model&rft.jtitle=Telkomnika&rft.au=Harintaka,%20Harintaka&rft.date=2023-12-01&rft.volume=21&rft.issue=6&rft.spage=1317&rft.epage=1325&rft.pages=1317-1325&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v21i6.25299&rft_dat=%3Cproquest_cross%3E2897069673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1959-e0b8de7db7175620bc62d7f858c2a796d4a09afed5d25cfaad5bcc07fc6265043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2897069673&rft_id=info:pmid/&rfr_iscdi=true