Loading…

Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization

We consider solving linear optimization (LO) problems with uncertain objective coefficients. For such problems, we often employ robust optimization (RO) approaches by introducing an uncertainty set for the unknown coefficients. Typical RO approaches require observations or prior knowledge of the unk...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Ueta, Ayaka, Tanaka, Mirai, Kobayashi, Ken, Nakata, Kazuhide
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ueta, Ayaka
Tanaka, Mirai
Kobayashi, Ken
Nakata, Kazuhide
description We consider solving linear optimization (LO) problems with uncertain objective coefficients. For such problems, we often employ robust optimization (RO) approaches by introducing an uncertainty set for the unknown coefficients. Typical RO approaches require observations or prior knowledge of the unknown coefficient to define an appropriate uncertainty set. However, such information may not always be available in practice. In this study, we propose a novel uncertainty set for robust linear optimization (RLO) problems without prior knowledge of the unknown coefficients. Instead, we assume to have data of known constraint parameters and corresponding optimal solutions. Specifically, we derive an explicit form of the uncertainty set as a polytope by applying techniques of inverse optimization (IO). We prove that the RLO problem with the proposed uncertainty set can be equivalently reformulated as an LO problem. Numerical experiments show that the RO approach with the proposed uncertainty set outperforms classical IO in terms of performance stability.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2897291404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897291404</sourcerecordid><originalsourceid>FETCH-proquest_journals_28972914043</originalsourceid><addsrcrecordid>eNqNiz0LwjAUAIMgWLT_IeAcSF9a266KYkEQ_JhL1FdI0aTmpYL-eh0cHJ1uuLsBi0CpRBQpwIjFRK2UEmY5ZJmKWFXZB3pCse2CuZmXDsZZMdeEF360Z_RBGxuefI-BN87znTv1FPjGWNSe_04TNmz0lTD-csymq-VhsRadd_ceKdSt6739qBqKMocySWWq_qveyXs88A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897291404</pqid></control><display><type>article</type><title>Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization</title><source>Publicly Available Content Database</source><creator>Ueta, Ayaka ; Tanaka, Mirai ; Kobayashi, Ken ; Nakata, Kazuhide</creator><creatorcontrib>Ueta, Ayaka ; Tanaka, Mirai ; Kobayashi, Ken ; Nakata, Kazuhide</creatorcontrib><description>We consider solving linear optimization (LO) problems with uncertain objective coefficients. For such problems, we often employ robust optimization (RO) approaches by introducing an uncertainty set for the unknown coefficients. Typical RO approaches require observations or prior knowledge of the unknown coefficient to define an appropriate uncertainty set. However, such information may not always be available in practice. In this study, we propose a novel uncertainty set for robust linear optimization (RLO) problems without prior knowledge of the unknown coefficients. Instead, we assume to have data of known constraint parameters and corresponding optimal solutions. Specifically, we derive an explicit form of the uncertainty set as a polytope by applying techniques of inverse optimization (IO). We prove that the RLO problem with the proposed uncertainty set can be equivalently reformulated as an LO problem. Numerical experiments show that the RO approach with the proposed uncertainty set outperforms classical IO in terms of performance stability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coefficients ; Optimization ; Robustness (mathematics) ; Uncertainty</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2897291404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ueta, Ayaka</creatorcontrib><creatorcontrib>Tanaka, Mirai</creatorcontrib><creatorcontrib>Kobayashi, Ken</creatorcontrib><creatorcontrib>Nakata, Kazuhide</creatorcontrib><title>Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization</title><title>arXiv.org</title><description>We consider solving linear optimization (LO) problems with uncertain objective coefficients. For such problems, we often employ robust optimization (RO) approaches by introducing an uncertainty set for the unknown coefficients. Typical RO approaches require observations or prior knowledge of the unknown coefficient to define an appropriate uncertainty set. However, such information may not always be available in practice. In this study, we propose a novel uncertainty set for robust linear optimization (RLO) problems without prior knowledge of the unknown coefficients. Instead, we assume to have data of known constraint parameters and corresponding optimal solutions. Specifically, we derive an explicit form of the uncertainty set as a polytope by applying techniques of inverse optimization (IO). We prove that the RLO problem with the proposed uncertainty set can be equivalently reformulated as an LO problem. Numerical experiments show that the RO approach with the proposed uncertainty set outperforms classical IO in terms of performance stability.</description><subject>Coefficients</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiz0LwjAUAIMgWLT_IeAcSF9a266KYkEQ_JhL1FdI0aTmpYL-eh0cHJ1uuLsBi0CpRBQpwIjFRK2UEmY5ZJmKWFXZB3pCse2CuZmXDsZZMdeEF360Z_RBGxuefI-BN87znTv1FPjGWNSe_04TNmz0lTD-csymq-VhsRadd_ceKdSt6739qBqKMocySWWq_qveyXs88A</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ueta, Ayaka</creator><creator>Tanaka, Mirai</creator><creator>Kobayashi, Ken</creator><creator>Nakata, Kazuhide</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231201</creationdate><title>Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization</title><author>Ueta, Ayaka ; Tanaka, Mirai ; Kobayashi, Ken ; Nakata, Kazuhide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28972914043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coefficients</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Ueta, Ayaka</creatorcontrib><creatorcontrib>Tanaka, Mirai</creatorcontrib><creatorcontrib>Kobayashi, Ken</creatorcontrib><creatorcontrib>Nakata, Kazuhide</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueta, Ayaka</au><au>Tanaka, Mirai</au><au>Kobayashi, Ken</au><au>Nakata, Kazuhide</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization</atitle><jtitle>arXiv.org</jtitle><date>2023-12-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider solving linear optimization (LO) problems with uncertain objective coefficients. For such problems, we often employ robust optimization (RO) approaches by introducing an uncertainty set for the unknown coefficients. Typical RO approaches require observations or prior knowledge of the unknown coefficient to define an appropriate uncertainty set. However, such information may not always be available in practice. In this study, we propose a novel uncertainty set for robust linear optimization (RLO) problems without prior knowledge of the unknown coefficients. Instead, we assume to have data of known constraint parameters and corresponding optimal solutions. Specifically, we derive an explicit form of the uncertainty set as a polytope by applying techniques of inverse optimization (IO). We prove that the RLO problem with the proposed uncertainty set can be equivalently reformulated as an LO problem. Numerical experiments show that the RO approach with the proposed uncertainty set outperforms classical IO in terms of performance stability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2897291404
source Publicly Available Content Database
subjects Coefficients
Optimization
Robustness (mathematics)
Uncertainty
title Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Inverse-Optimization-Based%20Uncertainty%20Set%20for%20Robust%20Linear%20Optimization&rft.jtitle=arXiv.org&rft.au=Ueta,%20Ayaka&rft.date=2023-12-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2897291404%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28972914043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2897291404&rft_id=info:pmid/&rfr_iscdi=true