Loading…

Solution of generalized fractional Jaulent–Miodek model with uncertain initial conditions

This paper analyses a coupled system of generalized coupled system of fractional Jaulent–Miodek equations, including uncertain initial conditions with fuzzy extension. In this regard, an extension of the homotopy with a generalized integral algorithm is adopted for a class of time-fractional fuzzy J...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2023-12, Vol.13 (12), p.125303-125303-27
Main Authors: Sartanpara, Parthkumar P., Meher, Ramakanta, Nikan, Omid, Avazzadeh, Zakieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-65201617e29f3fa04c949c7a9edd94664d87306a1cc23ac7addb3b51ce46c38b3
cites cdi_FETCH-LOGICAL-c393t-65201617e29f3fa04c949c7a9edd94664d87306a1cc23ac7addb3b51ce46c38b3
container_end_page 125303-27
container_issue 12
container_start_page 125303
container_title AIP advances
container_volume 13
creator Sartanpara, Parthkumar P.
Meher, Ramakanta
Nikan, Omid
Avazzadeh, Zakieh
description This paper analyses a coupled system of generalized coupled system of fractional Jaulent–Miodek equations, including uncertain initial conditions with fuzzy extension. In this regard, an extension of the homotopy with a generalized integral algorithm is adopted for a class of time-fractional fuzzy Jaulent–Miodek models by mixing the fuzzy q-homotopy analysis algorithm with a generalized integral transform and Caputo fractional derivative. The triangular fuzzy numbers (TFNs)are expressed in double parametric form using κ-cut and r-cut and utilized to explain the uncertainties arising in the initial conditions of highly nonlinear differential equations with generalized Hukuhara differentiability (gH-differentiability). The TFNs are controlled by the κ-cut and r-cut, and the variability of uncertainty is examined using a “triangular membership function” (TMF). The results are analyzed by finding the solutions for different spatial coordinate values of time with κ-cut and r-cut for both lower and upper bounds and validated through numerical and graphical representations in crisp cases. Finally, it can be seen that the uncertain probability density function rapidly decreases at the left and right edges when the fractional order is increased, and it is observed that the obtained solutions are more accurate than the existing results through the Hermite wavelet method in the literature.
doi_str_mv 10.1063/5.0166789
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898126758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7c58f09d529642e6920123412d59e66c</doaj_id><sourcerecordid>2898126758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-65201617e29f3fa04c949c7a9edd94664d87306a1cc23ac7addb3b51ce46c38b3</originalsourceid><addsrcrecordid>eNp9kc1KAzEQx4MoKNWDb7DgSaE135scRfyoVDyoJw8hTbI1dbupSRbRk-_gG_okplbEkzkkw-Q3__8wA8A-giMEOTlmI4g4r4XcADsYMTEkGPPNP_E22EtpDsuhEkFBd8DDbWj77ENXhaaauc5F3fo3Z6smarPK67a60n3ruvz5_nHtg3VP1aLcbfXi82PVd8bFrH1X-c5nX2gTOutXlWkXbDW6TW7v5x2A-_Ozu9PL4eTmYnx6MhkaIkkecoZL26h2WDak0ZAaSaWptXTWSso5taImkGtkDCa6fFg7JVOGjKPcEDElAzBe69qg52oZ_ULHVxW0V9-JEGdKx-xN61RtmGigtAxLTrHjslhjQhG2TDpe5AbgYK21jOG5dymreehjmUJSWEiBMK-ZKNThmjIxpBRd8-uKoFqtQjH1s4rCHq3ZZHzWq8H8A38Bn7qI0Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898126758</pqid></control><display><type>article</type><title>Solution of generalized fractional Jaulent–Miodek model with uncertain initial conditions</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sartanpara, Parthkumar P. ; Meher, Ramakanta ; Nikan, Omid ; Avazzadeh, Zakieh</creator><creatorcontrib>Sartanpara, Parthkumar P. ; Meher, Ramakanta ; Nikan, Omid ; Avazzadeh, Zakieh</creatorcontrib><description>This paper analyses a coupled system of generalized coupled system of fractional Jaulent–Miodek equations, including uncertain initial conditions with fuzzy extension. In this regard, an extension of the homotopy with a generalized integral algorithm is adopted for a class of time-fractional fuzzy Jaulent–Miodek models by mixing the fuzzy q-homotopy analysis algorithm with a generalized integral transform and Caputo fractional derivative. The triangular fuzzy numbers (TFNs)are expressed in double parametric form using κ-cut and r-cut and utilized to explain the uncertainties arising in the initial conditions of highly nonlinear differential equations with generalized Hukuhara differentiability (gH-differentiability). The TFNs are controlled by the κ-cut and r-cut, and the variability of uncertainty is examined using a “triangular membership function” (TMF). The results are analyzed by finding the solutions for different spatial coordinate values of time with κ-cut and r-cut for both lower and upper bounds and validated through numerical and graphical representations in crisp cases. Finally, it can be seen that the uncertain probability density function rapidly decreases at the left and right edges when the fractional order is increased, and it is observed that the obtained solutions are more accurate than the existing results through the Hermite wavelet method in the literature.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0166789</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Derivatives ; Graphical representations ; Homotopy theory ; Initial conditions ; Integral transforms ; Integrals ; Mathematical models ; Nonlinear differential equations ; Probability density functions ; Uncertainty ; Upper bounds ; Wavelet analysis</subject><ispartof>AIP advances, 2023-12, Vol.13 (12), p.125303-125303-27</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-65201617e29f3fa04c949c7a9edd94664d87306a1cc23ac7addb3b51ce46c38b3</citedby><cites>FETCH-LOGICAL-c393t-65201617e29f3fa04c949c7a9edd94664d87306a1cc23ac7addb3b51ce46c38b3</cites><orcidid>0000-0003-3041-8726 ; 0000-0002-8361-4141 ; 0000-0002-9070-0419 ; 0000-0003-2257-1798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0166789$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Sartanpara, Parthkumar P.</creatorcontrib><creatorcontrib>Meher, Ramakanta</creatorcontrib><creatorcontrib>Nikan, Omid</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><title>Solution of generalized fractional Jaulent–Miodek model with uncertain initial conditions</title><title>AIP advances</title><description>This paper analyses a coupled system of generalized coupled system of fractional Jaulent–Miodek equations, including uncertain initial conditions with fuzzy extension. In this regard, an extension of the homotopy with a generalized integral algorithm is adopted for a class of time-fractional fuzzy Jaulent–Miodek models by mixing the fuzzy q-homotopy analysis algorithm with a generalized integral transform and Caputo fractional derivative. The triangular fuzzy numbers (TFNs)are expressed in double parametric form using κ-cut and r-cut and utilized to explain the uncertainties arising in the initial conditions of highly nonlinear differential equations with generalized Hukuhara differentiability (gH-differentiability). The TFNs are controlled by the κ-cut and r-cut, and the variability of uncertainty is examined using a “triangular membership function” (TMF). The results are analyzed by finding the solutions for different spatial coordinate values of time with κ-cut and r-cut for both lower and upper bounds and validated through numerical and graphical representations in crisp cases. Finally, it can be seen that the uncertain probability density function rapidly decreases at the left and right edges when the fractional order is increased, and it is observed that the obtained solutions are more accurate than the existing results through the Hermite wavelet method in the literature.</description><subject>Algorithms</subject><subject>Derivatives</subject><subject>Graphical representations</subject><subject>Homotopy theory</subject><subject>Initial conditions</subject><subject>Integral transforms</subject><subject>Integrals</subject><subject>Mathematical models</subject><subject>Nonlinear differential equations</subject><subject>Probability density functions</subject><subject>Uncertainty</subject><subject>Upper bounds</subject><subject>Wavelet analysis</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1KAzEQx4MoKNWDb7DgSaE135scRfyoVDyoJw8hTbI1dbupSRbRk-_gG_okplbEkzkkw-Q3__8wA8A-giMEOTlmI4g4r4XcADsYMTEkGPPNP_E22EtpDsuhEkFBd8DDbWj77ENXhaaauc5F3fo3Z6smarPK67a60n3ruvz5_nHtg3VP1aLcbfXi82PVd8bFrH1X-c5nX2gTOutXlWkXbDW6TW7v5x2A-_Ozu9PL4eTmYnx6MhkaIkkecoZL26h2WDak0ZAaSaWptXTWSso5taImkGtkDCa6fFg7JVOGjKPcEDElAzBe69qg52oZ_ULHVxW0V9-JEGdKx-xN61RtmGigtAxLTrHjslhjQhG2TDpe5AbgYK21jOG5dymreehjmUJSWEiBMK-ZKNThmjIxpBRd8-uKoFqtQjH1s4rCHq3ZZHzWq8H8A38Bn7qI0Q</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Sartanpara, Parthkumar P.</creator><creator>Meher, Ramakanta</creator><creator>Nikan, Omid</creator><creator>Avazzadeh, Zakieh</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3041-8726</orcidid><orcidid>https://orcid.org/0000-0002-8361-4141</orcidid><orcidid>https://orcid.org/0000-0002-9070-0419</orcidid><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid></search><sort><creationdate>20231201</creationdate><title>Solution of generalized fractional Jaulent–Miodek model with uncertain initial conditions</title><author>Sartanpara, Parthkumar P. ; Meher, Ramakanta ; Nikan, Omid ; Avazzadeh, Zakieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-65201617e29f3fa04c949c7a9edd94664d87306a1cc23ac7addb3b51ce46c38b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Derivatives</topic><topic>Graphical representations</topic><topic>Homotopy theory</topic><topic>Initial conditions</topic><topic>Integral transforms</topic><topic>Integrals</topic><topic>Mathematical models</topic><topic>Nonlinear differential equations</topic><topic>Probability density functions</topic><topic>Uncertainty</topic><topic>Upper bounds</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sartanpara, Parthkumar P.</creatorcontrib><creatorcontrib>Meher, Ramakanta</creatorcontrib><creatorcontrib>Nikan, Omid</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sartanpara, Parthkumar P.</au><au>Meher, Ramakanta</au><au>Nikan, Omid</au><au>Avazzadeh, Zakieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of generalized fractional Jaulent–Miodek model with uncertain initial conditions</atitle><jtitle>AIP advances</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>13</volume><issue>12</issue><spage>125303</spage><epage>125303-27</epage><pages>125303-125303-27</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>This paper analyses a coupled system of generalized coupled system of fractional Jaulent–Miodek equations, including uncertain initial conditions with fuzzy extension. In this regard, an extension of the homotopy with a generalized integral algorithm is adopted for a class of time-fractional fuzzy Jaulent–Miodek models by mixing the fuzzy q-homotopy analysis algorithm with a generalized integral transform and Caputo fractional derivative. The triangular fuzzy numbers (TFNs)are expressed in double parametric form using κ-cut and r-cut and utilized to explain the uncertainties arising in the initial conditions of highly nonlinear differential equations with generalized Hukuhara differentiability (gH-differentiability). The TFNs are controlled by the κ-cut and r-cut, and the variability of uncertainty is examined using a “triangular membership function” (TMF). The results are analyzed by finding the solutions for different spatial coordinate values of time with κ-cut and r-cut for both lower and upper bounds and validated through numerical and graphical representations in crisp cases. Finally, it can be seen that the uncertain probability density function rapidly decreases at the left and right edges when the fractional order is increased, and it is observed that the obtained solutions are more accurate than the existing results through the Hermite wavelet method in the literature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0166789</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-3041-8726</orcidid><orcidid>https://orcid.org/0000-0002-8361-4141</orcidid><orcidid>https://orcid.org/0000-0002-9070-0419</orcidid><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-12, Vol.13 (12), p.125303-125303-27
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2898126758
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Algorithms
Derivatives
Graphical representations
Homotopy theory
Initial conditions
Integral transforms
Integrals
Mathematical models
Nonlinear differential equations
Probability density functions
Uncertainty
Upper bounds
Wavelet analysis
title Solution of generalized fractional Jaulent–Miodek model with uncertain initial conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20generalized%20fractional%20Jaulent%E2%80%93Miodek%20model%20with%20uncertain%20initial%20conditions&rft.jtitle=AIP%20advances&rft.au=Sartanpara,%20Parthkumar%20P.&rft.date=2023-12-01&rft.volume=13&rft.issue=12&rft.spage=125303&rft.epage=125303-27&rft.pages=125303-125303-27&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0166789&rft_dat=%3Cproquest_cross%3E2898126758%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-65201617e29f3fa04c949c7a9edd94664d87306a1cc23ac7addb3b51ce46c38b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898126758&rft_id=info:pmid/&rfr_iscdi=true