Loading…
Modular extension of topological orders from congruence representations
We present an efficient method to compute the modular extension of both fermionic topological orders and \(\mathbb{Z}_2\)-symmetric bosonic topological orders in two spatial dimensions, basing on congruence representations of \(\mathrm{SL}_2(\mathbb{Z})\) and its subgroups. To demonstrate the validi...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Seo, Donghae You, Minyoung Gil Young Cho Hee-Cheol, Kim |
description | We present an efficient method to compute the modular extension of both fermionic topological orders and \(\mathbb{Z}_2\)-symmetric bosonic topological orders in two spatial dimensions, basing on congruence representations of \(\mathrm{SL}_2(\mathbb{Z})\) and its subgroups. To demonstrate the validity of our approach, we provide explicit calculations for topological orders with rank up to 10 for the fermionic cases and up to 6 for the bosonic cases. Along the way, we clarify the relation between fermionic rational conformal field theories, which live on the boundary of the corresponding fermionic topological orders, and modular extensions. In particular, we show that the \(\mathrm{SL}_2(\mathbb{Z})\) representation of the R-R sector can be determined from the NS-NS sector using the modular extensions. |
doi_str_mv | 10.48550/arxiv.2312.00868 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2898167895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898167895</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-a9ca46705101e0601ad67fdf0a36202fc67aa9dae97c84c47ca1f46bcc9d8e993</originalsourceid><addsrcrecordid>eNotjc1Kw0AURgdBsNQ-gLsB14l3ZjJ_SylahRY33Zfr5E5JiZk4k0gf34BuvrM652PsQUDdOK3hCfO1-6mlErIGcMbdsJVUSlSukfKObUq5AIA0VmqtVmx3SO3cY-Z0nWgoXRp4inxKY-rTuQvY85RbyoXHnL54SMM5zzQE4pnGTIWGCadFKvfsNmJfaPPPNTu-vhy3b9X-Y_e-fd5X6LVbJmBjLGgBgsCAwNbY2EZAZSTIGIxF9C2St8E1obEBRWzMZwi-deS9WrPHv-yY0_dMZTpd0pyH5fEknXfCWOe1-gXBdE8i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898167895</pqid></control><display><type>article</type><title>Modular extension of topological orders from congruence representations</title><source>ProQuest - Publicly Available Content Database</source><creator>Seo, Donghae ; You, Minyoung ; Gil Young Cho ; Hee-Cheol, Kim</creator><creatorcontrib>Seo, Donghae ; You, Minyoung ; Gil Young Cho ; Hee-Cheol, Kim</creatorcontrib><description>We present an efficient method to compute the modular extension of both fermionic topological orders and \(\mathbb{Z}_2\)-symmetric bosonic topological orders in two spatial dimensions, basing on congruence representations of \(\mathrm{SL}_2(\mathbb{Z})\) and its subgroups. To demonstrate the validity of our approach, we provide explicit calculations for topological orders with rank up to 10 for the fermionic cases and up to 6 for the bosonic cases. Along the way, we clarify the relation between fermionic rational conformal field theories, which live on the boundary of the corresponding fermionic topological orders, and modular extensions. In particular, we show that the \(\mathrm{SL}_2(\mathbb{Z})\) representation of the R-R sector can be determined from the NS-NS sector using the modular extensions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2312.00868</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Representations ; Subgroups ; Topology</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2898167895?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Seo, Donghae</creatorcontrib><creatorcontrib>You, Minyoung</creatorcontrib><creatorcontrib>Gil Young Cho</creatorcontrib><creatorcontrib>Hee-Cheol, Kim</creatorcontrib><title>Modular extension of topological orders from congruence representations</title><title>arXiv.org</title><description>We present an efficient method to compute the modular extension of both fermionic topological orders and \(\mathbb{Z}_2\)-symmetric bosonic topological orders in two spatial dimensions, basing on congruence representations of \(\mathrm{SL}_2(\mathbb{Z})\) and its subgroups. To demonstrate the validity of our approach, we provide explicit calculations for topological orders with rank up to 10 for the fermionic cases and up to 6 for the bosonic cases. Along the way, we clarify the relation between fermionic rational conformal field theories, which live on the boundary of the corresponding fermionic topological orders, and modular extensions. In particular, we show that the \(\mathrm{SL}_2(\mathbb{Z})\) representation of the R-R sector can be determined from the NS-NS sector using the modular extensions.</description><subject>Representations</subject><subject>Subgroups</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1Kw0AURgdBsNQ-gLsB14l3ZjJ_SylahRY33Zfr5E5JiZk4k0gf34BuvrM652PsQUDdOK3hCfO1-6mlErIGcMbdsJVUSlSukfKObUq5AIA0VmqtVmx3SO3cY-Z0nWgoXRp4inxKY-rTuQvY85RbyoXHnL54SMM5zzQE4pnGTIWGCadFKvfsNmJfaPPPNTu-vhy3b9X-Y_e-fd5X6LVbJmBjLGgBgsCAwNbY2EZAZSTIGIxF9C2St8E1obEBRWzMZwi-deS9WrPHv-yY0_dMZTpd0pyH5fEknXfCWOe1-gXBdE8i</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Seo, Donghae</creator><creator>You, Minyoung</creator><creator>Gil Young Cho</creator><creator>Hee-Cheol, Kim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231201</creationdate><title>Modular extension of topological orders from congruence representations</title><author>Seo, Donghae ; You, Minyoung ; Gil Young Cho ; Hee-Cheol, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-a9ca46705101e0601ad67fdf0a36202fc67aa9dae97c84c47ca1f46bcc9d8e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Representations</topic><topic>Subgroups</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Seo, Donghae</creatorcontrib><creatorcontrib>You, Minyoung</creatorcontrib><creatorcontrib>Gil Young Cho</creatorcontrib><creatorcontrib>Hee-Cheol, Kim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Donghae</au><au>You, Minyoung</au><au>Gil Young Cho</au><au>Hee-Cheol, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular extension of topological orders from congruence representations</atitle><jtitle>arXiv.org</jtitle><date>2023-12-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present an efficient method to compute the modular extension of both fermionic topological orders and \(\mathbb{Z}_2\)-symmetric bosonic topological orders in two spatial dimensions, basing on congruence representations of \(\mathrm{SL}_2(\mathbb{Z})\) and its subgroups. To demonstrate the validity of our approach, we provide explicit calculations for topological orders with rank up to 10 for the fermionic cases and up to 6 for the bosonic cases. Along the way, we clarify the relation between fermionic rational conformal field theories, which live on the boundary of the corresponding fermionic topological orders, and modular extensions. In particular, we show that the \(\mathrm{SL}_2(\mathbb{Z})\) representation of the R-R sector can be determined from the NS-NS sector using the modular extensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2312.00868</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2898167895 |
source | ProQuest - Publicly Available Content Database |
subjects | Representations Subgroups Topology |
title | Modular extension of topological orders from congruence representations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20extension%20of%20topological%20orders%20from%20congruence%20representations&rft.jtitle=arXiv.org&rft.au=Seo,%20Donghae&rft.date=2023-12-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2312.00868&rft_dat=%3Cproquest%3E2898167895%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-a9ca46705101e0601ad67fdf0a36202fc67aa9dae97c84c47ca1f46bcc9d8e993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898167895&rft_id=info:pmid/&rfr_iscdi=true |