Loading…

Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells

A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier sel...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2023-12, Vol.16 (12), p.5792-5804
Main Authors: Xu, Huifen, Liang, Zheng, Ye, Jiajiu, Zhang, Yong, Wang, Zihan, Zhang, Hui, Wan, Changmao, Xu, Guangkun, Zeng, Jie, Xu, Baomin, Xiao, Zhengguo, Kirchartz, Thomas, Pan, Xu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903
cites cdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903
container_end_page 5804
container_issue 12
container_start_page 5792
container_title Energy & environmental science
container_volume 16
creator Xu, Huifen
Liang, Zheng
Ye, Jiajiu
Zhang, Yong
Wang, Zihan
Zhang, Hui
Wan, Changmao
Xu, Guangkun
Zeng, Jie
Xu, Baomin
Xiao, Zhengguo
Kirchartz, Thomas
Pan, Xu
description A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct via an interfacial molecular bridge comprised of Ph-CH 2 N + H 3− n (CH 3 ) n ammonium cations (where n is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA, n = 3), where the –N + (CH 3 ) 3 groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap ( E g = 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm 2 deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking.
doi_str_mv 10.1039/D3EE02591H
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898316232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898316232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</originalsourceid><addsrcrecordid>eNpFkM9KAzEQxoMoWKsXnyDgTagmm_2Xo9RqhYIXPS_ZZFJTt5s6yRZ8El_XLLV4mW8Yft98zBByzdkdZ0LeP4rFgmWF5MsTMuFVkc-KipWnx76U2Tm5CGHDWJmxSk7Iz9z3IeKgo-vXFH07hEg_IAJ616dqlYZArUeqFaIDpHunTMJHpUfEqY5ufQd66BTSFp1ZJxf0qu1GtdZpB32kqjc0xHGarHvACIbuUtQ-fLoINPjRrqHrwiU5s6oLcPWnU_L-tHibL2er1-eX-cNqptOVcSarwso8y6HktsxLzpQRRlmjKiYs00ULtjZC5KDrXJhq5ExdG66SsFYyMSU3h7079F8DhNhs_IB9imyyWtaCl5nIEnV7oDT6EBBss0O3VfjdcNaMj2_-Hy9-AW8deg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898316232</pqid></control><display><type>article</type><title>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</title><source>Royal Society of Chemistry Journals</source><creator>Xu, Huifen ; Liang, Zheng ; Ye, Jiajiu ; Zhang, Yong ; Wang, Zihan ; Zhang, Hui ; Wan, Changmao ; Xu, Guangkun ; Zeng, Jie ; Xu, Baomin ; Xiao, Zhengguo ; Kirchartz, Thomas ; Pan, Xu</creator><creatorcontrib>Xu, Huifen ; Liang, Zheng ; Ye, Jiajiu ; Zhang, Yong ; Wang, Zihan ; Zhang, Hui ; Wan, Changmao ; Xu, Guangkun ; Zeng, Jie ; Xu, Baomin ; Xiao, Zhengguo ; Kirchartz, Thomas ; Pan, Xu</creatorcontrib><description>A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct via an interfacial molecular bridge comprised of Ph-CH 2 N + H 3− n (CH 3 ) n ammonium cations (where n is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA, n = 3), where the –N + (CH 3 ) 3 groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap ( E g = 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm 2 deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D3EE02591H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonium ; Cations ; Current carriers ; Efficiency ; Electrostatic properties ; Electrostatics ; Energy levels ; Maximum power tracking ; Perovskites ; Photovoltaic cells ; Robustness ; Solar cells ; Substrates ; Vertical orientation ; Viaducts</subject><ispartof>Energy &amp; environmental science, 2023-12, Vol.16 (12), p.5792-5804</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</citedby><cites>FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</cites><orcidid>0000-0002-5408-4647 ; 0000-0002-6954-8213 ; 0000-0003-3770-7918 ; 0000-0002-2868-0613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Xu, Huifen</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Ye, Jiajiu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wan, Changmao</creatorcontrib><creatorcontrib>Xu, Guangkun</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Xu, Baomin</creatorcontrib><creatorcontrib>Xiao, Zhengguo</creatorcontrib><creatorcontrib>Kirchartz, Thomas</creatorcontrib><creatorcontrib>Pan, Xu</creatorcontrib><title>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</title><title>Energy &amp; environmental science</title><description>A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct via an interfacial molecular bridge comprised of Ph-CH 2 N + H 3− n (CH 3 ) n ammonium cations (where n is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA, n = 3), where the –N + (CH 3 ) 3 groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap ( E g = 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm 2 deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking.</description><subject>Ammonium</subject><subject>Cations</subject><subject>Current carriers</subject><subject>Efficiency</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Energy levels</subject><subject>Maximum power tracking</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Robustness</subject><subject>Solar cells</subject><subject>Substrates</subject><subject>Vertical orientation</subject><subject>Viaducts</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM9KAzEQxoMoWKsXnyDgTagmm_2Xo9RqhYIXPS_ZZFJTt5s6yRZ8El_XLLV4mW8Yft98zBByzdkdZ0LeP4rFgmWF5MsTMuFVkc-KipWnx76U2Tm5CGHDWJmxSk7Iz9z3IeKgo-vXFH07hEg_IAJ616dqlYZArUeqFaIDpHunTMJHpUfEqY5ufQd66BTSFp1ZJxf0qu1GtdZpB32kqjc0xHGarHvACIbuUtQ-fLoINPjRrqHrwiU5s6oLcPWnU_L-tHibL2er1-eX-cNqptOVcSarwso8y6HktsxLzpQRRlmjKiYs00ULtjZC5KDrXJhq5ExdG66SsFYyMSU3h7079F8DhNhs_IB9imyyWtaCl5nIEnV7oDT6EBBss0O3VfjdcNaMj2_-Hy9-AW8deg4</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Xu, Huifen</creator><creator>Liang, Zheng</creator><creator>Ye, Jiajiu</creator><creator>Zhang, Yong</creator><creator>Wang, Zihan</creator><creator>Zhang, Hui</creator><creator>Wan, Changmao</creator><creator>Xu, Guangkun</creator><creator>Zeng, Jie</creator><creator>Xu, Baomin</creator><creator>Xiao, Zhengguo</creator><creator>Kirchartz, Thomas</creator><creator>Pan, Xu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5408-4647</orcidid><orcidid>https://orcid.org/0000-0002-6954-8213</orcidid><orcidid>https://orcid.org/0000-0003-3770-7918</orcidid><orcidid>https://orcid.org/0000-0002-2868-0613</orcidid></search><sort><creationdate>20231206</creationdate><title>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</title><author>Xu, Huifen ; Liang, Zheng ; Ye, Jiajiu ; Zhang, Yong ; Wang, Zihan ; Zhang, Hui ; Wan, Changmao ; Xu, Guangkun ; Zeng, Jie ; Xu, Baomin ; Xiao, Zhengguo ; Kirchartz, Thomas ; Pan, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonium</topic><topic>Cations</topic><topic>Current carriers</topic><topic>Efficiency</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Energy levels</topic><topic>Maximum power tracking</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Robustness</topic><topic>Solar cells</topic><topic>Substrates</topic><topic>Vertical orientation</topic><topic>Viaducts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Huifen</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Ye, Jiajiu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wan, Changmao</creatorcontrib><creatorcontrib>Xu, Guangkun</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Xu, Baomin</creatorcontrib><creatorcontrib>Xiao, Zhengguo</creatorcontrib><creatorcontrib>Kirchartz, Thomas</creatorcontrib><creatorcontrib>Pan, Xu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Huifen</au><au>Liang, Zheng</au><au>Ye, Jiajiu</au><au>Zhang, Yong</au><au>Wang, Zihan</au><au>Zhang, Hui</au><au>Wan, Changmao</au><au>Xu, Guangkun</au><au>Zeng, Jie</au><au>Xu, Baomin</au><au>Xiao, Zhengguo</au><au>Kirchartz, Thomas</au><au>Pan, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-12-06</date><risdate>2023</risdate><volume>16</volume><issue>12</issue><spage>5792</spage><epage>5804</epage><pages>5792-5804</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct via an interfacial molecular bridge comprised of Ph-CH 2 N + H 3− n (CH 3 ) n ammonium cations (where n is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA, n = 3), where the –N + (CH 3 ) 3 groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap ( E g = 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm 2 deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D3EE02591H</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5408-4647</orcidid><orcidid>https://orcid.org/0000-0002-6954-8213</orcidid><orcidid>https://orcid.org/0000-0003-3770-7918</orcidid><orcidid>https://orcid.org/0000-0002-2868-0613</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-12, Vol.16 (12), p.5792-5804
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2898316232
source Royal Society of Chemistry Journals
subjects Ammonium
Cations
Current carriers
Efficiency
Electrostatic properties
Electrostatics
Energy levels
Maximum power tracking
Perovskites
Photovoltaic cells
Robustness
Solar cells
Substrates
Vertical orientation
Viaducts
title Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20robust%20heterointerfaces%20for%20carrier%20viaduct%20via%20interfacial%20molecular%20bridges%20enables%20efficient%20and%20stable%20inverted%20perovskite%20solar%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Xu,%20Huifen&rft.date=2023-12-06&rft.volume=16&rft.issue=12&rft.spage=5792&rft.epage=5804&rft.pages=5792-5804&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D3EE02591H&rft_dat=%3Cproquest_cross%3E2898316232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898316232&rft_id=info:pmid/&rfr_iscdi=true