Loading…
Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells
A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier sel...
Saved in:
Published in: | Energy & environmental science 2023-12, Vol.16 (12), p.5792-5804 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903 |
---|---|
cites | cdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903 |
container_end_page | 5804 |
container_issue | 12 |
container_start_page | 5792 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Xu, Huifen Liang, Zheng Ye, Jiajiu Zhang, Yong Wang, Zihan Zhang, Hui Wan, Changmao Xu, Guangkun Zeng, Jie Xu, Baomin Xiao, Zhengguo Kirchartz, Thomas Pan, Xu |
description | A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct
via
an interfacial molecular bridge comprised of Ph-CH
2
N
+
H
3−
n
(CH
3
)
n
ammonium cations (where
n
is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA,
n
= 3), where the –N
+
(CH
3
)
3
groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap (
E
g
= 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm
2
deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking. |
doi_str_mv | 10.1039/D3EE02591H |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898316232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898316232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</originalsourceid><addsrcrecordid>eNpFkM9KAzEQxoMoWKsXnyDgTagmm_2Xo9RqhYIXPS_ZZFJTt5s6yRZ8El_XLLV4mW8Yft98zBByzdkdZ0LeP4rFgmWF5MsTMuFVkc-KipWnx76U2Tm5CGHDWJmxSk7Iz9z3IeKgo-vXFH07hEg_IAJ616dqlYZArUeqFaIDpHunTMJHpUfEqY5ufQd66BTSFp1ZJxf0qu1GtdZpB32kqjc0xHGarHvACIbuUtQ-fLoINPjRrqHrwiU5s6oLcPWnU_L-tHibL2er1-eX-cNqptOVcSarwso8y6HktsxLzpQRRlmjKiYs00ULtjZC5KDrXJhq5ExdG66SsFYyMSU3h7079F8DhNhs_IB9imyyWtaCl5nIEnV7oDT6EBBss0O3VfjdcNaMj2_-Hy9-AW8deg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898316232</pqid></control><display><type>article</type><title>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</title><source>Royal Society of Chemistry Journals</source><creator>Xu, Huifen ; Liang, Zheng ; Ye, Jiajiu ; Zhang, Yong ; Wang, Zihan ; Zhang, Hui ; Wan, Changmao ; Xu, Guangkun ; Zeng, Jie ; Xu, Baomin ; Xiao, Zhengguo ; Kirchartz, Thomas ; Pan, Xu</creator><creatorcontrib>Xu, Huifen ; Liang, Zheng ; Ye, Jiajiu ; Zhang, Yong ; Wang, Zihan ; Zhang, Hui ; Wan, Changmao ; Xu, Guangkun ; Zeng, Jie ; Xu, Baomin ; Xiao, Zhengguo ; Kirchartz, Thomas ; Pan, Xu</creatorcontrib><description>A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct
via
an interfacial molecular bridge comprised of Ph-CH
2
N
+
H
3−
n
(CH
3
)
n
ammonium cations (where
n
is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA,
n
= 3), where the –N
+
(CH
3
)
3
groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap (
E
g
= 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm
2
deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D3EE02591H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonium ; Cations ; Current carriers ; Efficiency ; Electrostatic properties ; Electrostatics ; Energy levels ; Maximum power tracking ; Perovskites ; Photovoltaic cells ; Robustness ; Solar cells ; Substrates ; Vertical orientation ; Viaducts</subject><ispartof>Energy & environmental science, 2023-12, Vol.16 (12), p.5792-5804</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</citedby><cites>FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</cites><orcidid>0000-0002-5408-4647 ; 0000-0002-6954-8213 ; 0000-0003-3770-7918 ; 0000-0002-2868-0613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Xu, Huifen</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Ye, Jiajiu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wan, Changmao</creatorcontrib><creatorcontrib>Xu, Guangkun</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Xu, Baomin</creatorcontrib><creatorcontrib>Xiao, Zhengguo</creatorcontrib><creatorcontrib>Kirchartz, Thomas</creatorcontrib><creatorcontrib>Pan, Xu</creatorcontrib><title>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</title><title>Energy & environmental science</title><description>A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct
via
an interfacial molecular bridge comprised of Ph-CH
2
N
+
H
3−
n
(CH
3
)
n
ammonium cations (where
n
is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA,
n
= 3), where the –N
+
(CH
3
)
3
groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap (
E
g
= 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm
2
deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking.</description><subject>Ammonium</subject><subject>Cations</subject><subject>Current carriers</subject><subject>Efficiency</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Energy levels</subject><subject>Maximum power tracking</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Robustness</subject><subject>Solar cells</subject><subject>Substrates</subject><subject>Vertical orientation</subject><subject>Viaducts</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM9KAzEQxoMoWKsXnyDgTagmm_2Xo9RqhYIXPS_ZZFJTt5s6yRZ8El_XLLV4mW8Yft98zBByzdkdZ0LeP4rFgmWF5MsTMuFVkc-KipWnx76U2Tm5CGHDWJmxSk7Iz9z3IeKgo-vXFH07hEg_IAJ616dqlYZArUeqFaIDpHunTMJHpUfEqY5ufQd66BTSFp1ZJxf0qu1GtdZpB32kqjc0xHGarHvACIbuUtQ-fLoINPjRrqHrwiU5s6oLcPWnU_L-tHibL2er1-eX-cNqptOVcSarwso8y6HktsxLzpQRRlmjKiYs00ULtjZC5KDrXJhq5ExdG66SsFYyMSU3h7079F8DhNhs_IB9imyyWtaCl5nIEnV7oDT6EBBss0O3VfjdcNaMj2_-Hy9-AW8deg4</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Xu, Huifen</creator><creator>Liang, Zheng</creator><creator>Ye, Jiajiu</creator><creator>Zhang, Yong</creator><creator>Wang, Zihan</creator><creator>Zhang, Hui</creator><creator>Wan, Changmao</creator><creator>Xu, Guangkun</creator><creator>Zeng, Jie</creator><creator>Xu, Baomin</creator><creator>Xiao, Zhengguo</creator><creator>Kirchartz, Thomas</creator><creator>Pan, Xu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5408-4647</orcidid><orcidid>https://orcid.org/0000-0002-6954-8213</orcidid><orcidid>https://orcid.org/0000-0003-3770-7918</orcidid><orcidid>https://orcid.org/0000-0002-2868-0613</orcidid></search><sort><creationdate>20231206</creationdate><title>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</title><author>Xu, Huifen ; Liang, Zheng ; Ye, Jiajiu ; Zhang, Yong ; Wang, Zihan ; Zhang, Hui ; Wan, Changmao ; Xu, Guangkun ; Zeng, Jie ; Xu, Baomin ; Xiao, Zhengguo ; Kirchartz, Thomas ; Pan, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonium</topic><topic>Cations</topic><topic>Current carriers</topic><topic>Efficiency</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Energy levels</topic><topic>Maximum power tracking</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Robustness</topic><topic>Solar cells</topic><topic>Substrates</topic><topic>Vertical orientation</topic><topic>Viaducts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Huifen</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Ye, Jiajiu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wan, Changmao</creatorcontrib><creatorcontrib>Xu, Guangkun</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Xu, Baomin</creatorcontrib><creatorcontrib>Xiao, Zhengguo</creatorcontrib><creatorcontrib>Kirchartz, Thomas</creatorcontrib><creatorcontrib>Pan, Xu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Huifen</au><au>Liang, Zheng</au><au>Ye, Jiajiu</au><au>Zhang, Yong</au><au>Wang, Zihan</au><au>Zhang, Hui</au><au>Wan, Changmao</au><au>Xu, Guangkun</au><au>Zeng, Jie</au><au>Xu, Baomin</au><au>Xiao, Zhengguo</au><au>Kirchartz, Thomas</au><au>Pan, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells</atitle><jtitle>Energy & environmental science</jtitle><date>2023-12-06</date><risdate>2023</risdate><volume>16</volume><issue>12</issue><spage>5792</spage><epage>5804</epage><pages>5792-5804</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>A robust perovskite–substrate interface is critical to realize state-of-the-art inverted (p–i–n) perovskite solar cells (PSCs), as it enables charge carrier selectivity by means of suitable electrostatics, energy level alignment, and low interfacial recombination. To achieve this goal of carrier selectivity in p–i–n type PSCs, we propose a strategy of carrier viaduct
via
an interfacial molecular bridge comprised of Ph-CH
2
N
+
H
3−
n
(CH
3
)
n
ammonium cations (where
n
is the degree of substitution). Through a joint theoretical–experimental study, we demonstrate that the most stable heterointerface is established by quaternary ammonium (QA,
n
= 3), where the –N
+
(CH
3
)
3
groups preferentially insert into the perovskite frameworks, with a vertical downward orientation of the phenyl groups towards the perovskite-substrates. This interfacial molecular bridge configuration as a carrier viaduct enables directional carrier management and redistributes a homogeneous environment at the heterointerface. Therefore, the carrier viaduct strategy enhances charge carrier extraction and transport in both in-plane or out-of-plane directions. Meanwhile, the bottom interfacial molecule acts as a double-sided molecular binder, maintaining the contact stack and strengthening the weak interface. The fabricated lab-scale inverted PSCs exhibit a champion efficiency of 25.45% (certified at 24.9%), with the fill factor exceeding 85.66%, corresponding to 95% of their thermodynamic limit at its bandgap (
E
g
= 1.54 eV). The corresponding perovskite solar modules for an active area of 23.25 cm
2
deliver an efficiency of 20.91%. Notably, even unencapsulated target PSCs retain nearly their initial efficiency after 3000 hours under light soaking at maximum power point tracking.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D3EE02591H</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5408-4647</orcidid><orcidid>https://orcid.org/0000-0002-6954-8213</orcidid><orcidid>https://orcid.org/0000-0003-3770-7918</orcidid><orcidid>https://orcid.org/0000-0002-2868-0613</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-12, Vol.16 (12), p.5792-5804 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2898316232 |
source | Royal Society of Chemistry Journals |
subjects | Ammonium Cations Current carriers Efficiency Electrostatic properties Electrostatics Energy levels Maximum power tracking Perovskites Photovoltaic cells Robustness Solar cells Substrates Vertical orientation Viaducts |
title | Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20robust%20heterointerfaces%20for%20carrier%20viaduct%20via%20interfacial%20molecular%20bridges%20enables%20efficient%20and%20stable%20inverted%20perovskite%20solar%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Xu,%20Huifen&rft.date=2023-12-06&rft.volume=16&rft.issue=12&rft.spage=5792&rft.epage=5804&rft.pages=5792-5804&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D3EE02591H&rft_dat=%3Cproquest_cross%3E2898316232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-975f9424e61f64610ad3dafda703f0c5bef8d334ec843d74e61d88d1a1d80b903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898316232&rft_id=info:pmid/&rfr_iscdi=true |