Loading…
Ongoing fragmentation of the subducting Cocos slab, Central America
Fundamental to plate tectonics is the subduction of cold and mechanically strong oceanic plates. While the subducted plates are conventionally regarded to be impermeable to mantle flow and separate the mantle wedge and the subslab region, isolated openings have been proposed. By combining new shear...
Saved in:
Published in: | Geology (Boulder) 2023-12, Vol.51 (12), p.1106-1110 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fundamental to plate tectonics is the subduction of cold and mechanically strong oceanic plates. While the subducted plates are conventionally regarded to be impermeable to mantle flow and separate the mantle wedge and the subslab region, isolated openings have been proposed. By combining new shear wave splitting measurements with results from geodynamic modeling and recent seismic tomography and geochemical observations, we show that the upper ∼200 km of the Cocos slab in northern Central America is intensively fractured. The slab there is strong enough to produce typical arc volcanoes and Benioff Zone earthquakes but allows mantle flow to traverse from the subslab region to the mantle wedge. Upwelling of hot subslab mantle flow through the slab provides a viable explanation for the behind-the-volcanic-front volcanoes that are geochemically distinct from typical arc volcanoes, and for the puzzling high heat flow, high elevation, and low Bouguer gravity anomalies observed in northern Central America. |
---|---|
ISSN: | 0091-7613 1943-2682 |
DOI: | 10.1130/G51403.1 |