Loading…
Improved Performance of Organic Light-Emitting Transistors Enabled by Polyurethane Gate Dielectric
Organic light-emitting transistors (OLETs) are multifunctional optoelectronic devices that combine in a single structure the advantages of organic light emitting diodes (OLEDs) and organic field-effect transistors (OFETs). However, low charge mobility and high threshold voltage are critical hurdles...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic light-emitting transistors (OLETs) are multifunctional optoelectronic devices that combine in a single structure the advantages of organic light emitting diodes (OLEDs) and organic field-effect transistors (OFETs). However, low charge mobility and high threshold voltage are critical hurdles to practical OLETs implementation. This work reports on the improvements obtained by using polyurethane films as dielectric layer material in place of the standard poly(methylmethacrylate) (PMMA) in OLET devices. It was found that polyurethane drastically reduces the number of traps in the device thereby improving electrical and optoelectronic device parameters. In addition, a model was developed to rationalize an anomalous behavior at the pinch-off voltage. Our findings represent a step forward to overcome the limiting factors of OLETs that prevent their use in commercial electronics by providing a simple route for low-bias device operation. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2312.02302 |