Loading…

Shifted symplectic structures on derived Quot-stacks II -- Derived Quot-schemes as dg manifolds

It is proved that derived Quot-schemes, as defined by Ciocan-Fontanine and Kapranov, are represented by dg manifolds of finite type. This is the second part if a work aimed to analyze shifted symplectic structures on moduli spaces of coherent sheaves on Calabi--Yau manifolds. The first part related...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Borisov, Dennis, Katzarkov, Ludmil, Artan Sheshmani
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is proved that derived Quot-schemes, as defined by Ciocan-Fontanine and Kapranov, are represented by dg manifolds of finite type. This is the second part if a work aimed to analyze shifted symplectic structures on moduli spaces of coherent sheaves on Calabi--Yau manifolds. The first part related dg manifolds to derived schemes as defined by To\"en and Vezzosi.
ISSN:2331-8422