Loading…
SPLUS J142445.34–254247.1: An r-process–enhanced, Actinide-boost, Extremely Metal-poor Star Observed with GHOST
We report on a chemo-dynamical analysis of SPLUS J142445.34−254247.1 (SPLUS J1424−2542), an extremely metal-poor halo star enhanced in elements formed by the rapid neutron-capture process ( r -process). This star was first selected as a metal-poor candidate from its narrowband S-PLUS photometry and...
Saved in:
Published in: | The Astrophysical journal 2023-12, Vol.959 (1), p.60 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on a chemo-dynamical analysis of SPLUS J142445.34−254247.1 (SPLUS J1424−2542), an extremely metal-poor halo star enhanced in elements formed by the rapid neutron-capture process (
r
-process). This star was first selected as a metal-poor candidate from its narrowband S-PLUS photometry and followed up spectroscopically in medium resolution with Gemini-South/GMOS, which confirmed its low-metallicity status. High-resolution spectroscopy was gathered with GHOST at Gemini-South, allowing for the determination of the chemical abundances for 36 elements, from carbon to thorium. At [Fe/H] = −3.39, SPLUS J1424−2542 is one of the lowest-metallicity stars with measured Th and has the highest
log
ϵ
(
Th
/
Eu
)
observed to date, making it part of the “actinide-boost” category of
r
-process–enhanced stars. The analysis presented here suggests that the gas cloud from which SPLUS J1424−2542 formed must have been enriched by at least two progenitor populations. The light-element (
Z
≤ 30) abundance pattern is consistent with the yields from a supernova explosion of metal-free stars with 11.3–13.4
M
⊙
, and the heavy-element (
Z
≥ 38) abundance pattern can be reproduced by the yields from a neutron star merger (1.66
M
⊙
and 1.27
M
⊙
) event. A kinematical analysis also reveals that SPLUS J1424−2542 is a low-mass, old halo star with a likely in situ origin, not associated with any known early merger events in the Milky Way. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ad077e |