Loading…

Are Synthetic Data Useful for Egocentric Hand-Object Interaction Detection?

In this study, we investigate the effectiveness of synthetic data in enhancing egocentric hand-object interaction detection. Via extensive experiments and comparative analyses on three egocentric datasets, VISOR, EgoHOS, and ENIGMA-51, our findings reveal how to exploit synthetic data for the HOI de...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Leonardi, Rosario, Furnari, Antonino, Ragusa, Francesco, Farinella, Giovanni Maria
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Leonardi, Rosario
Furnari, Antonino
Ragusa, Francesco
Farinella, Giovanni Maria
description In this study, we investigate the effectiveness of synthetic data in enhancing egocentric hand-object interaction detection. Via extensive experiments and comparative analyses on three egocentric datasets, VISOR, EgoHOS, and ENIGMA-51, our findings reveal how to exploit synthetic data for the HOI detection task when real labeled data are scarce or unavailable. Specifically, by leveraging only 10% of real labeled data, we achieve improvements in Overall AP compared to baselines trained exclusively on real data of: +5.67% on EPIC-KITCHENS VISOR, +8.24% on EgoHOS, and +11.69% on ENIGMA-51. Our analysis is supported by a novel data generation pipeline and the newly introduced HOI-Synth benchmark which augments existing datasets with synthetic images of hand-object interactions automatically labeled with hand-object contact states, bounding boxes, and pixel-wise segmentation masks. Data, code, and data generation tools to support future research are released at: https://fpv-iplab.github.io/HOI-Synth/.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2899133404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899133404</sourcerecordid><originalsourceid>FETCH-proquest_journals_28991334043</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MC5kCattpOIrVQcHNS5xPiqLSXR5HXw7xXxA5zu4G7EAiFlHGWJEBMWet9xzsViKdJUBmy_dgjHl6E7UquhUKTg7LEZemisg_JmNRpyn1Qpc40Olw41wc4QOqWptQYKJPzaasbGjeo9hj9O2XxbnjZV9HD2OaCnurODM59UiyzPYykTnsj_rje2fTyO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899133404</pqid></control><display><type>article</type><title>Are Synthetic Data Useful for Egocentric Hand-Object Interaction Detection?</title><source>Publicly Available Content Database</source><creator>Leonardi, Rosario ; Furnari, Antonino ; Ragusa, Francesco ; Farinella, Giovanni Maria</creator><creatorcontrib>Leonardi, Rosario ; Furnari, Antonino ; Ragusa, Francesco ; Farinella, Giovanni Maria</creatorcontrib><description>In this study, we investigate the effectiveness of synthetic data in enhancing egocentric hand-object interaction detection. Via extensive experiments and comparative analyses on three egocentric datasets, VISOR, EgoHOS, and ENIGMA-51, our findings reveal how to exploit synthetic data for the HOI detection task when real labeled data are scarce or unavailable. Specifically, by leveraging only 10% of real labeled data, we achieve improvements in Overall AP compared to baselines trained exclusively on real data of: +5.67% on EPIC-KITCHENS VISOR, +8.24% on EgoHOS, and +11.69% on ENIGMA-51. Our analysis is supported by a novel data generation pipeline and the newly introduced HOI-Synth benchmark which augments existing datasets with synthetic images of hand-object interactions automatically labeled with hand-object contact states, bounding boxes, and pixel-wise segmentation masks. Data, code, and data generation tools to support future research are released at: https://fpv-iplab.github.io/HOI-Synth/.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Annotations ; Benchmarks ; Environment models ; Synthetic data ; Three dimensional models</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2899133404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25730,36988,44565</link.rule.ids></links><search><creatorcontrib>Leonardi, Rosario</creatorcontrib><creatorcontrib>Furnari, Antonino</creatorcontrib><creatorcontrib>Ragusa, Francesco</creatorcontrib><creatorcontrib>Farinella, Giovanni Maria</creatorcontrib><title>Are Synthetic Data Useful for Egocentric Hand-Object Interaction Detection?</title><title>arXiv.org</title><description>In this study, we investigate the effectiveness of synthetic data in enhancing egocentric hand-object interaction detection. Via extensive experiments and comparative analyses on three egocentric datasets, VISOR, EgoHOS, and ENIGMA-51, our findings reveal how to exploit synthetic data for the HOI detection task when real labeled data are scarce or unavailable. Specifically, by leveraging only 10% of real labeled data, we achieve improvements in Overall AP compared to baselines trained exclusively on real data of: +5.67% on EPIC-KITCHENS VISOR, +8.24% on EgoHOS, and +11.69% on ENIGMA-51. Our analysis is supported by a novel data generation pipeline and the newly introduced HOI-Synth benchmark which augments existing datasets with synthetic images of hand-object interactions automatically labeled with hand-object contact states, bounding boxes, and pixel-wise segmentation masks. Data, code, and data generation tools to support future research are released at: https://fpv-iplab.github.io/HOI-Synth/.</description><subject>Adaptation</subject><subject>Annotations</subject><subject>Benchmarks</subject><subject>Environment models</subject><subject>Synthetic data</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MC5kCattpOIrVQcHNS5xPiqLSXR5HXw7xXxA5zu4G7EAiFlHGWJEBMWet9xzsViKdJUBmy_dgjHl6E7UquhUKTg7LEZemisg_JmNRpyn1Qpc40Olw41wc4QOqWptQYKJPzaasbGjeo9hj9O2XxbnjZV9HD2OaCnurODM59UiyzPYykTnsj_rje2fTyO</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Leonardi, Rosario</creator><creator>Furnari, Antonino</creator><creator>Ragusa, Francesco</creator><creator>Farinella, Giovanni Maria</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240716</creationdate><title>Are Synthetic Data Useful for Egocentric Hand-Object Interaction Detection?</title><author>Leonardi, Rosario ; Furnari, Antonino ; Ragusa, Francesco ; Farinella, Giovanni Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28991334043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Annotations</topic><topic>Benchmarks</topic><topic>Environment models</topic><topic>Synthetic data</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Leonardi, Rosario</creatorcontrib><creatorcontrib>Furnari, Antonino</creatorcontrib><creatorcontrib>Ragusa, Francesco</creatorcontrib><creatorcontrib>Farinella, Giovanni Maria</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonardi, Rosario</au><au>Furnari, Antonino</au><au>Ragusa, Francesco</au><au>Farinella, Giovanni Maria</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Are Synthetic Data Useful for Egocentric Hand-Object Interaction Detection?</atitle><jtitle>arXiv.org</jtitle><date>2024-07-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this study, we investigate the effectiveness of synthetic data in enhancing egocentric hand-object interaction detection. Via extensive experiments and comparative analyses on three egocentric datasets, VISOR, EgoHOS, and ENIGMA-51, our findings reveal how to exploit synthetic data for the HOI detection task when real labeled data are scarce or unavailable. Specifically, by leveraging only 10% of real labeled data, we achieve improvements in Overall AP compared to baselines trained exclusively on real data of: +5.67% on EPIC-KITCHENS VISOR, +8.24% on EgoHOS, and +11.69% on ENIGMA-51. Our analysis is supported by a novel data generation pipeline and the newly introduced HOI-Synth benchmark which augments existing datasets with synthetic images of hand-object interactions automatically labeled with hand-object contact states, bounding boxes, and pixel-wise segmentation masks. Data, code, and data generation tools to support future research are released at: https://fpv-iplab.github.io/HOI-Synth/.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2899133404
source Publicly Available Content Database
subjects Adaptation
Annotations
Benchmarks
Environment models
Synthetic data
Three dimensional models
title Are Synthetic Data Useful for Egocentric Hand-Object Interaction Detection?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T09%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Are%20Synthetic%20Data%20Useful%20for%20Egocentric%20Hand-Object%20Interaction%20Detection?&rft.jtitle=arXiv.org&rft.au=Leonardi,%20Rosario&rft.date=2024-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2899133404%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28991334043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899133404&rft_id=info:pmid/&rfr_iscdi=true