Loading…

Coupled Contour Regression for Efficient Delineation of Lumen and External Elastic Lamina in Intravascular Ultrasound Images

Automatic delineation of the lumen and vessel contours in intravascular ultrasound (IVUS) images is crucial for the subsequent IVUS-based analysis. Existing methods usually address this task through mask-based segmentation, which cannot effectively handle the anatomical plausibility of the lumen and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2023-12, Vol.27 (12), p.5883-5894
Main Authors: Yang, Yuan, Yu, Wei, Du, Haiyan, Ling, Li, Feng, Qianjin, Tu, Shengxian, Yang, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c302t-a75d564772898e55c57e2364b3e60077960c8fdf1fa45409c8f900ed0b76d0423
container_end_page 5894
container_issue 12
container_start_page 5883
container_title IEEE journal of biomedical and health informatics
container_volume 27
creator Yang, Yuan
Yu, Wei
Du, Haiyan
Ling, Li
Feng, Qianjin
Tu, Shengxian
Yang, Wei
description Automatic delineation of the lumen and vessel contours in intravascular ultrasound (IVUS) images is crucial for the subsequent IVUS-based analysis. Existing methods usually address this task through mask-based segmentation, which cannot effectively handle the anatomical plausibility of the lumen and external elastic lamina (EEL) contours and thus limits their performance. In this article, we propose a contour encoding based method called coupled contour regression network (CCRNet) to directly predict the lumen and EEL contour pairs. The lumen and EEL contours are resampled, coupled, and embedded into a low-dimensional space to learn a compact contour representation. Then, we employ a convolutional network backbone to predict the coupled contour signatures and reconstruct the signatures to the object contours by a linear decoder. Assisted by the implicit anatomical prior of the paired lumen and EEL contours in the signature space and contour decoder, CCRNet has the potential to avoid producing unreasonable results. We evaluated our proposed method on a large IVUS dataset consisting of 7204 cross-sectional frames from 185 pullbacks. The CCRNet can rapidly extract the contours at 100 fps. Without any post-processing, all produced contours are anatomically reasonable in the test 19 pullbacks. The mean Dice similarity coefficients of our CCRNet for the lumen and EEL are 0.940 and 0.958, which are comparable to the mask-based models. In terms of the contour metric Hausdorff distance, our CCRNet achieves 0.258 mm for lumen and 0.268 mm for EEL, which outperforms the mask-based models.
doi_str_mv 10.1109/JBHI.2023.3321788
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2899204514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10271560</ieee_id><sourcerecordid>2873253809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-a75d564772898e55c57e2364b3e60077960c8fdf1fa45409c8f900ed0b76d0423</originalsourceid><addsrcrecordid>eNpdkU-LFDEQxRtR3GXdDyCIBLx4mbGSdP4ddRzdkQFB3HOT6a4sWdLJmHQvCn5408ysiLlUqvJ7DyqvaV5SWFMK5t2XDze7NQPG15wzqrR-0lwyKvWKMdBPH-_UtBfNdSn3UI-uIyOfNxdcKcOkpJfN702ajwEHsklxSnMm3_AuYyk-ReJSJlvnfO8xTuQjBh_RTstLcmQ_jxiJjQPZ_pwwRxvINtgy-Z7s7eijJT6SXZyyfbCln4PN5DbUrqS5anajvcPyonnmbCh4fa5Xze2n7ffNzWr_9fNu836_6jmwaWWVGIRslWLaaBSiFwoZl-2BowSoq0jotRscdbYVLZjaGAAc4KDkAC3jV83bk-8xpx8zlqkbfekxBBsxzaVjWnEmuAZT0Tf_off1V-p2C2UMg1bQtlL0RPU5lZLRdcfsR5t_dRS6JZ1uSadb0unO6VTN67PzfBhx-Kt4zKICr06AR8R_DJmiQgL_A7E_ku4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899204514</pqid></control><display><type>article</type><title>Coupled Contour Regression for Efficient Delineation of Lumen and External Elastic Lamina in Intravascular Ultrasound Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Yuan ; Yu, Wei ; Du, Haiyan ; Ling, Li ; Feng, Qianjin ; Tu, Shengxian ; Yang, Wei</creator><creatorcontrib>Yang, Yuan ; Yu, Wei ; Du, Haiyan ; Ling, Li ; Feng, Qianjin ; Tu, Shengxian ; Yang, Wei</creatorcontrib><description>Automatic delineation of the lumen and vessel contours in intravascular ultrasound (IVUS) images is crucial for the subsequent IVUS-based analysis. Existing methods usually address this task through mask-based segmentation, which cannot effectively handle the anatomical plausibility of the lumen and external elastic lamina (EEL) contours and thus limits their performance. In this article, we propose a contour encoding based method called coupled contour regression network (CCRNet) to directly predict the lumen and EEL contour pairs. The lumen and EEL contours are resampled, coupled, and embedded into a low-dimensional space to learn a compact contour representation. Then, we employ a convolutional network backbone to predict the coupled contour signatures and reconstruct the signatures to the object contours by a linear decoder. Assisted by the implicit anatomical prior of the paired lumen and EEL contours in the signature space and contour decoder, CCRNet has the potential to avoid producing unreasonable results. We evaluated our proposed method on a large IVUS dataset consisting of 7204 cross-sectional frames from 185 pullbacks. The CCRNet can rapidly extract the contours at 100 fps. Without any post-processing, all produced contours are anatomically reasonable in the test 19 pullbacks. The mean Dice similarity coefficients of our CCRNet for the lumen and EEL are 0.940 and 0.958, which are comparable to the mask-based models. In terms of the contour metric Hausdorff distance, our CCRNet achieves 0.258 mm for lumen and 0.268 mm for EEL, which outperforms the mask-based models.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3321788</identifier><identifier>PMID: 37792661</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>contour regression ; Contours ; Cross-Sectional Studies ; Decoding ; deep learning ; Delineation ; Elastic limit ; Feature extraction ; Humans ; Image reconstruction ; Intravascular ultrasound ; Lumen ; Metric space ; segmentation ; Shape ; Signatures ; Task analysis ; Ultrasonic imaging ; Ultrasonography ; Ultrasonography, Interventional - methods ; Ultrasound</subject><ispartof>IEEE journal of biomedical and health informatics, 2023-12, Vol.27 (12), p.5883-5894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-a75d564772898e55c57e2364b3e60077960c8fdf1fa45409c8f900ed0b76d0423</cites><orcidid>0000-0001-5781-7941 ; 0000-0001-9681-1067 ; 0009-0006-9198-0965 ; 0000-0001-8647-0596 ; 0000-0002-2161-3231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10271560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37792661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Du, Haiyan</creatorcontrib><creatorcontrib>Ling, Li</creatorcontrib><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Tu, Shengxian</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><title>Coupled Contour Regression for Efficient Delineation of Lumen and External Elastic Lamina in Intravascular Ultrasound Images</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Automatic delineation of the lumen and vessel contours in intravascular ultrasound (IVUS) images is crucial for the subsequent IVUS-based analysis. Existing methods usually address this task through mask-based segmentation, which cannot effectively handle the anatomical plausibility of the lumen and external elastic lamina (EEL) contours and thus limits their performance. In this article, we propose a contour encoding based method called coupled contour regression network (CCRNet) to directly predict the lumen and EEL contour pairs. The lumen and EEL contours are resampled, coupled, and embedded into a low-dimensional space to learn a compact contour representation. Then, we employ a convolutional network backbone to predict the coupled contour signatures and reconstruct the signatures to the object contours by a linear decoder. Assisted by the implicit anatomical prior of the paired lumen and EEL contours in the signature space and contour decoder, CCRNet has the potential to avoid producing unreasonable results. We evaluated our proposed method on a large IVUS dataset consisting of 7204 cross-sectional frames from 185 pullbacks. The CCRNet can rapidly extract the contours at 100 fps. Without any post-processing, all produced contours are anatomically reasonable in the test 19 pullbacks. The mean Dice similarity coefficients of our CCRNet for the lumen and EEL are 0.940 and 0.958, which are comparable to the mask-based models. In terms of the contour metric Hausdorff distance, our CCRNet achieves 0.258 mm for lumen and 0.268 mm for EEL, which outperforms the mask-based models.</description><subject>contour regression</subject><subject>Contours</subject><subject>Cross-Sectional Studies</subject><subject>Decoding</subject><subject>deep learning</subject><subject>Delineation</subject><subject>Elastic limit</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Intravascular ultrasound</subject><subject>Lumen</subject><subject>Metric space</subject><subject>segmentation</subject><subject>Shape</subject><subject>Signatures</subject><subject>Task analysis</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasonography, Interventional - methods</subject><subject>Ultrasound</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU-LFDEQxRtR3GXdDyCIBLx4mbGSdP4ddRzdkQFB3HOT6a4sWdLJmHQvCn5408ysiLlUqvJ7DyqvaV5SWFMK5t2XDze7NQPG15wzqrR-0lwyKvWKMdBPH-_UtBfNdSn3UI-uIyOfNxdcKcOkpJfN702ajwEHsklxSnMm3_AuYyk-ReJSJlvnfO8xTuQjBh_RTstLcmQ_jxiJjQPZ_pwwRxvINtgy-Z7s7eijJT6SXZyyfbCln4PN5DbUrqS5anajvcPyonnmbCh4fa5Xze2n7ffNzWr_9fNu836_6jmwaWWVGIRslWLaaBSiFwoZl-2BowSoq0jotRscdbYVLZjaGAAc4KDkAC3jV83bk-8xpx8zlqkbfekxBBsxzaVjWnEmuAZT0Tf_off1V-p2C2UMg1bQtlL0RPU5lZLRdcfsR5t_dRS6JZ1uSadb0unO6VTN67PzfBhx-Kt4zKICr06AR8R_DJmiQgL_A7E_ku4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yang, Yuan</creator><creator>Yu, Wei</creator><creator>Du, Haiyan</creator><creator>Ling, Li</creator><creator>Feng, Qianjin</creator><creator>Tu, Shengxian</creator><creator>Yang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5781-7941</orcidid><orcidid>https://orcid.org/0000-0001-9681-1067</orcidid><orcidid>https://orcid.org/0009-0006-9198-0965</orcidid><orcidid>https://orcid.org/0000-0001-8647-0596</orcidid><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid></search><sort><creationdate>20231201</creationdate><title>Coupled Contour Regression for Efficient Delineation of Lumen and External Elastic Lamina in Intravascular Ultrasound Images</title><author>Yang, Yuan ; Yu, Wei ; Du, Haiyan ; Ling, Li ; Feng, Qianjin ; Tu, Shengxian ; Yang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-a75d564772898e55c57e2364b3e60077960c8fdf1fa45409c8f900ed0b76d0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>contour regression</topic><topic>Contours</topic><topic>Cross-Sectional Studies</topic><topic>Decoding</topic><topic>deep learning</topic><topic>Delineation</topic><topic>Elastic limit</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Intravascular ultrasound</topic><topic>Lumen</topic><topic>Metric space</topic><topic>segmentation</topic><topic>Shape</topic><topic>Signatures</topic><topic>Task analysis</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasonography, Interventional - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Du, Haiyan</creatorcontrib><creatorcontrib>Ling, Li</creatorcontrib><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Tu, Shengxian</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuan</au><au>Yu, Wei</au><au>Du, Haiyan</au><au>Ling, Li</au><au>Feng, Qianjin</au><au>Tu, Shengxian</au><au>Yang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Contour Regression for Efficient Delineation of Lumen and External Elastic Lamina in Intravascular Ultrasound Images</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>12</issue><spage>5883</spage><epage>5894</epage><pages>5883-5894</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Automatic delineation of the lumen and vessel contours in intravascular ultrasound (IVUS) images is crucial for the subsequent IVUS-based analysis. Existing methods usually address this task through mask-based segmentation, which cannot effectively handle the anatomical plausibility of the lumen and external elastic lamina (EEL) contours and thus limits their performance. In this article, we propose a contour encoding based method called coupled contour regression network (CCRNet) to directly predict the lumen and EEL contour pairs. The lumen and EEL contours are resampled, coupled, and embedded into a low-dimensional space to learn a compact contour representation. Then, we employ a convolutional network backbone to predict the coupled contour signatures and reconstruct the signatures to the object contours by a linear decoder. Assisted by the implicit anatomical prior of the paired lumen and EEL contours in the signature space and contour decoder, CCRNet has the potential to avoid producing unreasonable results. We evaluated our proposed method on a large IVUS dataset consisting of 7204 cross-sectional frames from 185 pullbacks. The CCRNet can rapidly extract the contours at 100 fps. Without any post-processing, all produced contours are anatomically reasonable in the test 19 pullbacks. The mean Dice similarity coefficients of our CCRNet for the lumen and EEL are 0.940 and 0.958, which are comparable to the mask-based models. In terms of the contour metric Hausdorff distance, our CCRNet achieves 0.258 mm for lumen and 0.268 mm for EEL, which outperforms the mask-based models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37792661</pmid><doi>10.1109/JBHI.2023.3321788</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5781-7941</orcidid><orcidid>https://orcid.org/0000-0001-9681-1067</orcidid><orcidid>https://orcid.org/0009-0006-9198-0965</orcidid><orcidid>https://orcid.org/0000-0001-8647-0596</orcidid><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2023-12, Vol.27 (12), p.5883-5894
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_proquest_journals_2899204514
source IEEE Electronic Library (IEL) Journals
subjects contour regression
Contours
Cross-Sectional Studies
Decoding
deep learning
Delineation
Elastic limit
Feature extraction
Humans
Image reconstruction
Intravascular ultrasound
Lumen
Metric space
segmentation
Shape
Signatures
Task analysis
Ultrasonic imaging
Ultrasonography
Ultrasonography, Interventional - methods
Ultrasound
title Coupled Contour Regression for Efficient Delineation of Lumen and External Elastic Lamina in Intravascular Ultrasound Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Contour%20Regression%20for%20Efficient%20Delineation%20of%20Lumen%20and%20External%20Elastic%20Lamina%20in%20Intravascular%20Ultrasound%20Images&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Yang,%20Yuan&rft.date=2023-12-01&rft.volume=27&rft.issue=12&rft.spage=5883&rft.epage=5894&rft.pages=5883-5894&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3321788&rft_dat=%3Cproquest_ieee_%3E2873253809%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-a75d564772898e55c57e2364b3e60077960c8fdf1fa45409c8f900ed0b76d0423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899204514&rft_id=info:pmid/37792661&rft_ieee_id=10271560&rfr_iscdi=true