Loading…

Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images

Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.584-600
Main Authors: Boumahdi, Meryeme, Garcia-Pedrero, Angel, Lillo-Saavedra, Mario, Gonzalo-Martin, Consuelo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3
container_end_page 600
container_issue
container_start_page 584
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 17
creator Boumahdi, Meryeme
Garcia-Pedrero, Angel
Lillo-Saavedra, Mario
Gonzalo-Martin, Consuelo
description Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method.
doi_str_mv 10.1109/JSTARS.2023.3333275
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2899221731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318948</ieee_id><doaj_id>oai_doaj_org_article_cd3ad994749944adbfff1da04f8c2aff</doaj_id><sourcerecordid>2899221731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3</originalsourceid><addsrcrecordid>eNpNUUtvEzEQXiGQCIVfAAdLnDf4GdvHULUQVAlBgjhaXnvcbLRZL7b3kH9ft1sBc5iRZr7HSF_TvCd4TQjWn77tD9uf-zXFlK1ZLSrFi2ZFiSAtEUy8bFZEM90Sjvnr5k3OJ4w3VGq2aqatP825nGEsKAa0r7MfYWgZ2k_gSrID-mxHn9Hvvhz_nSkqEd2MRzs6QOUI6Mdsh75cnjQmW_rYHuA8xcofLuh2zuDR7mzvIb9tXgU7ZHj3PK-aX7c3h-uv7d33L7vr7V3rmNClZTKwTnrPpKUYlFOy67wj3qoQQoetFhulghAgNmQjAXcBNAjKQQjBFVh21ewWXR_tyUypP9t0MdH25mkR072xqfRuAOM8s15rLnlt3PquWlQnzINy1IZQtT4uWlOKf2bIxZzinMb6vqFKa0qJZKSi2IJyKeacIPx1Jdg8xmSWmMxjTOY5psr6sLB6APiPwYjSXLEHwDGQIw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899221731</pqid></control><display><type>article</type><title>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</title><source>Alma/SFX Local Collection</source><creator>Boumahdi, Meryeme ; Garcia-Pedrero, Angel ; Lillo-Saavedra, Mario ; Gonzalo-Martin, Consuelo</creator><creatorcontrib>Boumahdi, Meryeme ; Garcia-Pedrero, Angel ; Lillo-Saavedra, Mario ; Gonzalo-Martin, Consuelo</creatorcontrib><description>Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2023.3333275</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Band adjustment ; Band spectra ; bands overlapping ; Earth ; Image enhancement ; Image quality ; Preprocessing ; Radiometry ; Remote sensing ; Response functions ; Sensors ; Sentinel-2 ; Sentinel-3 OLCI ; Spatial data ; Spatial resolution ; spatiotemporal data fusion ; Spatiotemporal phenomena ; Spectral bands ; spectral response function (SRF) ; Spectral sensitivity ; Temporal resolution ; Terrestrial atmosphere ; Time series analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.584-600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3</cites><orcidid>0000-0003-0600-8137 ; 0000-0002-6848-481X ; 0000-0002-0804-9293 ; 0000-0001-5634-9162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Boumahdi, Meryeme</creatorcontrib><creatorcontrib>Garcia-Pedrero, Angel</creatorcontrib><creatorcontrib>Lillo-Saavedra, Mario</creatorcontrib><creatorcontrib>Gonzalo-Martin, Consuelo</creatorcontrib><title>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method.</description><subject>Band adjustment</subject><subject>Band spectra</subject><subject>bands overlapping</subject><subject>Earth</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Preprocessing</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Response functions</subject><subject>Sensors</subject><subject>Sentinel-2</subject><subject>Sentinel-3 OLCI</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>spatiotemporal data fusion</subject><subject>Spatiotemporal phenomena</subject><subject>Spectral bands</subject><subject>spectral response function (SRF)</subject><subject>Spectral sensitivity</subject><subject>Temporal resolution</subject><subject>Terrestrial atmosphere</subject><subject>Time series analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtvEzEQXiGQCIVfAAdLnDf4GdvHULUQVAlBgjhaXnvcbLRZL7b3kH9ft1sBc5iRZr7HSF_TvCd4TQjWn77tD9uf-zXFlK1ZLSrFi2ZFiSAtEUy8bFZEM90Sjvnr5k3OJ4w3VGq2aqatP825nGEsKAa0r7MfYWgZ2k_gSrID-mxHn9Hvvhz_nSkqEd2MRzs6QOUI6Mdsh75cnjQmW_rYHuA8xcofLuh2zuDR7mzvIb9tXgU7ZHj3PK-aX7c3h-uv7d33L7vr7V3rmNClZTKwTnrPpKUYlFOy67wj3qoQQoetFhulghAgNmQjAXcBNAjKQQjBFVh21ewWXR_tyUypP9t0MdH25mkR072xqfRuAOM8s15rLnlt3PquWlQnzINy1IZQtT4uWlOKf2bIxZzinMb6vqFKa0qJZKSi2IJyKeacIPx1Jdg8xmSWmMxjTOY5psr6sLB6APiPwYjSXLEHwDGQIw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Boumahdi, Meryeme</creator><creator>Garcia-Pedrero, Angel</creator><creator>Lillo-Saavedra, Mario</creator><creator>Gonzalo-Martin, Consuelo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0600-8137</orcidid><orcidid>https://orcid.org/0000-0002-6848-481X</orcidid><orcidid>https://orcid.org/0000-0002-0804-9293</orcidid><orcidid>https://orcid.org/0000-0001-5634-9162</orcidid></search><sort><creationdate>2024</creationdate><title>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</title><author>Boumahdi, Meryeme ; Garcia-Pedrero, Angel ; Lillo-Saavedra, Mario ; Gonzalo-Martin, Consuelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band adjustment</topic><topic>Band spectra</topic><topic>bands overlapping</topic><topic>Earth</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Preprocessing</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Response functions</topic><topic>Sensors</topic><topic>Sentinel-2</topic><topic>Sentinel-3 OLCI</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>spatiotemporal data fusion</topic><topic>Spatiotemporal phenomena</topic><topic>Spectral bands</topic><topic>spectral response function (SRF)</topic><topic>Spectral sensitivity</topic><topic>Temporal resolution</topic><topic>Terrestrial atmosphere</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boumahdi, Meryeme</creatorcontrib><creatorcontrib>Garcia-Pedrero, Angel</creatorcontrib><creatorcontrib>Lillo-Saavedra, Mario</creatorcontrib><creatorcontrib>Gonzalo-Martin, Consuelo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boumahdi, Meryeme</au><au>Garcia-Pedrero, Angel</au><au>Lillo-Saavedra, Mario</au><au>Gonzalo-Martin, Consuelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>584</spage><epage>600</epage><pages>584-600</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2023.3333275</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0600-8137</orcidid><orcidid>https://orcid.org/0000-0002-6848-481X</orcidid><orcidid>https://orcid.org/0000-0002-0804-9293</orcidid><orcidid>https://orcid.org/0000-0001-5634-9162</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.584-600
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2899221731
source Alma/SFX Local Collection
subjects Band adjustment
Band spectra
bands overlapping
Earth
Image enhancement
Image quality
Preprocessing
Radiometry
Remote sensing
Response functions
Sensors
Sentinel-2
Sentinel-3 OLCI
Spatial data
Spatial resolution
spatiotemporal data fusion
Spatiotemporal phenomena
Spectral bands
spectral response function (SRF)
Spectral sensitivity
Temporal resolution
Terrestrial atmosphere
Time series analysis
title Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjustment%20of%20Sentinel-3%20Spectral%20Bands%20With%20Sentinel-2%20to%20Enhance%20the%20Quality%20of%20Spatio-Temporally%20Fused%20Images&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Boumahdi,%20Meryeme&rft.date=2024&rft.volume=17&rft.spage=584&rft.epage=600&rft.pages=584-600&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2023.3333275&rft_dat=%3Cproquest_doaj_%3E2899221731%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899221731&rft_id=info:pmid/&rft_ieee_id=10318948&rfr_iscdi=true