Loading…

Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance

The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practica...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2023-12, Vol.13 (46), p.n/a
Main Authors: Chi, Chunlei, Liu, Zheng, Wang, Guanwen, Qi, Bin, Qiu, Zhipeng, Yan, Yingchun, Huangfu, Chao, Lu, Xiaolong, Yang, Xinhou, Gong, Min, Cao, Ke, Wei, Tong, Fan, Zhuangjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23
cites cdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23
container_end_page n/a
container_issue 46
container_start_page
container_title Advanced energy materials
container_volume 13
creator Chi, Chunlei
Liu, Zheng
Wang, Guanwen
Qi, Bin
Qiu, Zhipeng
Yan, Yingchun
Huangfu, Chao
Lu, Xiaolong
Yang, Xinhou
Gong, Min
Cao, Ke
Wei, Tong
Fan, Zhuangjun
description The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage. Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage.
doi_str_mv 10.1002/aenm.202302055
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899365356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899365356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</originalsourceid><addsrcrecordid>eNqFkDtPAkEUhTdGE4nSWk9iaRbnwb5KBAQighqtJ7Ozd2BwmV1nF4XOxt7f6C9xEIOlt7k3J-c7Nzmed0Zwi2BMLwWYZYtiyjDFQXDgNUhI2n4Yt_Hh_mb02GtW1QK7aScEM9bwPgZWlHMwgKZrnQG6ygv5jHpg9StkqJ_N4Ov9c6JrW8zAoF5ROvV-JSrt5B9U14BUYdFQz-bo5gKNTA1WilzUujCoK0ohdb1Bwri0tYQ8B1OjB-GoO7AOXAoj4dQ7UiKvoPm7T7yn6_5jd-iPp4NRtzP2JSNR4FOgVMU4TSmJQGYyFkrhmCU4DWgmaCiJDJhII6JEEEISxYRSgAxjqTJQKWUn3vkut7TFywqqmi-KlTXuJadxkrAwYEHoXK2dS9qiqiwoXlq9FHbDCebbtvm2bb5v2wHJDnjTOWz-cfNOf3L7x34D-DiGqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899365356</pqid></control><display><type>article</type><title>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</title><source>Wiley</source><creator>Chi, Chunlei ; Liu, Zheng ; Wang, Guanwen ; Qi, Bin ; Qiu, Zhipeng ; Yan, Yingchun ; Huangfu, Chao ; Lu, Xiaolong ; Yang, Xinhou ; Gong, Min ; Cao, Ke ; Wei, Tong ; Fan, Zhuangjun</creator><creatorcontrib>Chi, Chunlei ; Liu, Zheng ; Wang, Guanwen ; Qi, Bin ; Qiu, Zhipeng ; Yan, Yingchun ; Huangfu, Chao ; Lu, Xiaolong ; Yang, Xinhou ; Gong, Min ; Cao, Ke ; Wei, Tong ; Fan, Zhuangjun</creatorcontrib><description>The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage. Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302055</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Doping ; edge‐nitrogen ; Graphene ; Graphite ; Insertion ; Intercalation ; Ion storage ; Kinetics ; molecular pulling effect ; Nitrogen ; oligoaniline ; potassium‐ion batteries ; quasi‐graphite ; Raman spectroscopy ; Spectrum analysis</subject><ispartof>Advanced energy materials, 2023-12, Vol.13 (46), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</citedby><cites>FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chi, Chunlei</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Guanwen</creatorcontrib><creatorcontrib>Qi, Bin</creatorcontrib><creatorcontrib>Qiu, Zhipeng</creatorcontrib><creatorcontrib>Yan, Yingchun</creatorcontrib><creatorcontrib>Huangfu, Chao</creatorcontrib><creatorcontrib>Lu, Xiaolong</creatorcontrib><creatorcontrib>Yang, Xinhou</creatorcontrib><creatorcontrib>Gong, Min</creatorcontrib><creatorcontrib>Cao, Ke</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Zhuangjun</creatorcontrib><title>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</title><title>Advanced energy materials</title><description>The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage. Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage.</description><subject>Doping</subject><subject>edge‐nitrogen</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Insertion</subject><subject>Intercalation</subject><subject>Ion storage</subject><subject>Kinetics</subject><subject>molecular pulling effect</subject><subject>Nitrogen</subject><subject>oligoaniline</subject><subject>potassium‐ion batteries</subject><subject>quasi‐graphite</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAkEUhTdGE4nSWk9iaRbnwb5KBAQighqtJ7Ozd2BwmV1nF4XOxt7f6C9xEIOlt7k3J-c7Nzmed0Zwi2BMLwWYZYtiyjDFQXDgNUhI2n4Yt_Hh_mb02GtW1QK7aScEM9bwPgZWlHMwgKZrnQG6ygv5jHpg9StkqJ_N4Ov9c6JrW8zAoF5ROvV-JSrt5B9U14BUYdFQz-bo5gKNTA1WilzUujCoK0ohdb1Bwri0tYQ8B1OjB-GoO7AOXAoj4dQ7UiKvoPm7T7yn6_5jd-iPp4NRtzP2JSNR4FOgVMU4TSmJQGYyFkrhmCU4DWgmaCiJDJhII6JEEEISxYRSgAxjqTJQKWUn3vkut7TFywqqmi-KlTXuJadxkrAwYEHoXK2dS9qiqiwoXlq9FHbDCebbtvm2bb5v2wHJDnjTOWz-cfNOf3L7x34D-DiGqg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chi, Chunlei</creator><creator>Liu, Zheng</creator><creator>Wang, Guanwen</creator><creator>Qi, Bin</creator><creator>Qiu, Zhipeng</creator><creator>Yan, Yingchun</creator><creator>Huangfu, Chao</creator><creator>Lu, Xiaolong</creator><creator>Yang, Xinhou</creator><creator>Gong, Min</creator><creator>Cao, Ke</creator><creator>Wei, Tong</creator><creator>Fan, Zhuangjun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231201</creationdate><title>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</title><author>Chi, Chunlei ; Liu, Zheng ; Wang, Guanwen ; Qi, Bin ; Qiu, Zhipeng ; Yan, Yingchun ; Huangfu, Chao ; Lu, Xiaolong ; Yang, Xinhou ; Gong, Min ; Cao, Ke ; Wei, Tong ; Fan, Zhuangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Doping</topic><topic>edge‐nitrogen</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Insertion</topic><topic>Intercalation</topic><topic>Ion storage</topic><topic>Kinetics</topic><topic>molecular pulling effect</topic><topic>Nitrogen</topic><topic>oligoaniline</topic><topic>potassium‐ion batteries</topic><topic>quasi‐graphite</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Chunlei</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Guanwen</creatorcontrib><creatorcontrib>Qi, Bin</creatorcontrib><creatorcontrib>Qiu, Zhipeng</creatorcontrib><creatorcontrib>Yan, Yingchun</creatorcontrib><creatorcontrib>Huangfu, Chao</creatorcontrib><creatorcontrib>Lu, Xiaolong</creatorcontrib><creatorcontrib>Yang, Xinhou</creatorcontrib><creatorcontrib>Gong, Min</creatorcontrib><creatorcontrib>Cao, Ke</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Zhuangjun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Chunlei</au><au>Liu, Zheng</au><au>Wang, Guanwen</au><au>Qi, Bin</au><au>Qiu, Zhipeng</au><au>Yan, Yingchun</au><au>Huangfu, Chao</au><au>Lu, Xiaolong</au><au>Yang, Xinhou</au><au>Gong, Min</au><au>Cao, Ke</au><au>Wei, Tong</au><au>Fan, Zhuangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</atitle><jtitle>Advanced energy materials</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>13</volume><issue>46</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage. Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302055</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-12, Vol.13 (46), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2899365356
source Wiley
subjects Doping
edge‐nitrogen
Graphene
Graphite
Insertion
Intercalation
Ion storage
Kinetics
molecular pulling effect
Nitrogen
oligoaniline
potassium‐ion batteries
quasi‐graphite
Raman spectroscopy
Spectrum analysis
title Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide%20Block%20Derived%20Edge%E2%80%90Nitrogen%20Doped%20Quasi%E2%80%90Graphite%20for%20High%20K+%20Intercalation%20Capacity%20and%20Excellent%20Rate%20Performance&rft.jtitle=Advanced%20energy%20materials&rft.au=Chi,%20Chunlei&rft.date=2023-12-01&rft.volume=13&rft.issue=46&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302055&rft_dat=%3Cproquest_cross%3E2899365356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899365356&rft_id=info:pmid/&rfr_iscdi=true