Loading…
Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance
The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practica...
Saved in:
Published in: | Advanced energy materials 2023-12, Vol.13 (46), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23 |
container_end_page | n/a |
container_issue | 46 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Chi, Chunlei Liu, Zheng Wang, Guanwen Qi, Bin Qiu, Zhipeng Yan, Yingchun Huangfu, Chao Lu, Xiaolong Yang, Xinhou Gong, Min Cao, Ke Wei, Tong Fan, Zhuangjun |
description | The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage.
Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage. |
doi_str_mv | 10.1002/aenm.202302055 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899365356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899365356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</originalsourceid><addsrcrecordid>eNqFkDtPAkEUhTdGE4nSWk9iaRbnwb5KBAQighqtJ7Ozd2BwmV1nF4XOxt7f6C9xEIOlt7k3J-c7Nzmed0Zwi2BMLwWYZYtiyjDFQXDgNUhI2n4Yt_Hh_mb02GtW1QK7aScEM9bwPgZWlHMwgKZrnQG6ygv5jHpg9StkqJ_N4Ov9c6JrW8zAoF5ROvV-JSrt5B9U14BUYdFQz-bo5gKNTA1WilzUujCoK0ohdb1Bwri0tYQ8B1OjB-GoO7AOXAoj4dQ7UiKvoPm7T7yn6_5jd-iPp4NRtzP2JSNR4FOgVMU4TSmJQGYyFkrhmCU4DWgmaCiJDJhII6JEEEISxYRSgAxjqTJQKWUn3vkut7TFywqqmi-KlTXuJadxkrAwYEHoXK2dS9qiqiwoXlq9FHbDCebbtvm2bb5v2wHJDnjTOWz-cfNOf3L7x34D-DiGqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899365356</pqid></control><display><type>article</type><title>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</title><source>Wiley</source><creator>Chi, Chunlei ; Liu, Zheng ; Wang, Guanwen ; Qi, Bin ; Qiu, Zhipeng ; Yan, Yingchun ; Huangfu, Chao ; Lu, Xiaolong ; Yang, Xinhou ; Gong, Min ; Cao, Ke ; Wei, Tong ; Fan, Zhuangjun</creator><creatorcontrib>Chi, Chunlei ; Liu, Zheng ; Wang, Guanwen ; Qi, Bin ; Qiu, Zhipeng ; Yan, Yingchun ; Huangfu, Chao ; Lu, Xiaolong ; Yang, Xinhou ; Gong, Min ; Cao, Ke ; Wei, Tong ; Fan, Zhuangjun</creatorcontrib><description>The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage.
Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302055</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Doping ; edge‐nitrogen ; Graphene ; Graphite ; Insertion ; Intercalation ; Ion storage ; Kinetics ; molecular pulling effect ; Nitrogen ; oligoaniline ; potassium‐ion batteries ; quasi‐graphite ; Raman spectroscopy ; Spectrum analysis</subject><ispartof>Advanced energy materials, 2023-12, Vol.13 (46), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</citedby><cites>FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chi, Chunlei</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Guanwen</creatorcontrib><creatorcontrib>Qi, Bin</creatorcontrib><creatorcontrib>Qiu, Zhipeng</creatorcontrib><creatorcontrib>Yan, Yingchun</creatorcontrib><creatorcontrib>Huangfu, Chao</creatorcontrib><creatorcontrib>Lu, Xiaolong</creatorcontrib><creatorcontrib>Yang, Xinhou</creatorcontrib><creatorcontrib>Gong, Min</creatorcontrib><creatorcontrib>Cao, Ke</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Zhuangjun</creatorcontrib><title>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</title><title>Advanced energy materials</title><description>The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage.
Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage.</description><subject>Doping</subject><subject>edge‐nitrogen</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Insertion</subject><subject>Intercalation</subject><subject>Ion storage</subject><subject>Kinetics</subject><subject>molecular pulling effect</subject><subject>Nitrogen</subject><subject>oligoaniline</subject><subject>potassium‐ion batteries</subject><subject>quasi‐graphite</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAkEUhTdGE4nSWk9iaRbnwb5KBAQighqtJ7Ozd2BwmV1nF4XOxt7f6C9xEIOlt7k3J-c7Nzmed0Zwi2BMLwWYZYtiyjDFQXDgNUhI2n4Yt_Hh_mb02GtW1QK7aScEM9bwPgZWlHMwgKZrnQG6ygv5jHpg9StkqJ_N4Ov9c6JrW8zAoF5ROvV-JSrt5B9U14BUYdFQz-bo5gKNTA1WilzUujCoK0ohdb1Bwri0tYQ8B1OjB-GoO7AOXAoj4dQ7UiKvoPm7T7yn6_5jd-iPp4NRtzP2JSNR4FOgVMU4TSmJQGYyFkrhmCU4DWgmaCiJDJhII6JEEEISxYRSgAxjqTJQKWUn3vkut7TFywqqmi-KlTXuJadxkrAwYEHoXK2dS9qiqiwoXlq9FHbDCebbtvm2bb5v2wHJDnjTOWz-cfNOf3L7x34D-DiGqg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chi, Chunlei</creator><creator>Liu, Zheng</creator><creator>Wang, Guanwen</creator><creator>Qi, Bin</creator><creator>Qiu, Zhipeng</creator><creator>Yan, Yingchun</creator><creator>Huangfu, Chao</creator><creator>Lu, Xiaolong</creator><creator>Yang, Xinhou</creator><creator>Gong, Min</creator><creator>Cao, Ke</creator><creator>Wei, Tong</creator><creator>Fan, Zhuangjun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231201</creationdate><title>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</title><author>Chi, Chunlei ; Liu, Zheng ; Wang, Guanwen ; Qi, Bin ; Qiu, Zhipeng ; Yan, Yingchun ; Huangfu, Chao ; Lu, Xiaolong ; Yang, Xinhou ; Gong, Min ; Cao, Ke ; Wei, Tong ; Fan, Zhuangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Doping</topic><topic>edge‐nitrogen</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Insertion</topic><topic>Intercalation</topic><topic>Ion storage</topic><topic>Kinetics</topic><topic>molecular pulling effect</topic><topic>Nitrogen</topic><topic>oligoaniline</topic><topic>potassium‐ion batteries</topic><topic>quasi‐graphite</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Chunlei</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Guanwen</creatorcontrib><creatorcontrib>Qi, Bin</creatorcontrib><creatorcontrib>Qiu, Zhipeng</creatorcontrib><creatorcontrib>Yan, Yingchun</creatorcontrib><creatorcontrib>Huangfu, Chao</creatorcontrib><creatorcontrib>Lu, Xiaolong</creatorcontrib><creatorcontrib>Yang, Xinhou</creatorcontrib><creatorcontrib>Gong, Min</creatorcontrib><creatorcontrib>Cao, Ke</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Zhuangjun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Chunlei</au><au>Liu, Zheng</au><au>Wang, Guanwen</au><au>Qi, Bin</au><au>Qiu, Zhipeng</au><au>Yan, Yingchun</au><au>Huangfu, Chao</au><au>Lu, Xiaolong</au><au>Yang, Xinhou</au><au>Gong, Min</au><au>Cao, Ke</au><au>Wei, Tong</au><au>Fan, Zhuangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance</atitle><jtitle>Advanced energy materials</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>13</volume><issue>46</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The intercalation capacity at low potential of carbon‐based anode plays a significant role for developing potassium ion batteries (PIBs) with high energy density. However, the inferior rate and cyclic performance caused by repeated insertion/extraction of large K+ tremendously restricts the practical application of PIBs. Herein, a quasi‐graphite structure with abundant edge‐nitrogen doping, micropores structure, and enhanced graphite nanodomains via in situ polymerization of oligoaniline in‐between graphene oxide blocks and subsequent carbonization is proposed. The macro‐ordered multilayered structure with micro‐ordered graphite nanodomains can provide efficient K+ insertion/extraction channels, thus greatly increasing the intercalation capacity at low potentials. Moreover, the high edge‐nitrogen doping (97%) is of great importance for improving K+ transfer kinetics, particularly at high current densities. As a result, the anode exhibits a high discharge capacity below 0.5 V (303 mAh g−1 at 0.05 A g−1), outstanding rate performance (113 mAh g−1 at 5 A g−1), and long‐term cycle stability (176 mAh g−1 at 1 A g−1 after 2000 cycles). The K+ intercalation mechanism and enhanced kinetics are systematically probed by in situ Raman spectroscopy, ex situ X‐ray diffraction (XRD) spectra, and theoretical calculations. This results demonstrate that the construction of quasi‐graphite with heteroatom doping is feasible for large ion storage.
Edge‐nitrogen doped quasi‐graphite (NQG) is prepared through the carbonization of oligoaniline pillared graphene oxide blocks. Benefitting from the long‐range ordered multilayer structure, suitable graphite nanodomains, and abundant edge‐nitrogen doping, the NQG electrode exhibits high intercalation capacity at low potential, excellent rate capability, and long cycling stability for electrochemical potassium storage.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302055</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-12, Vol.13 (46), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2899365356 |
source | Wiley |
subjects | Doping edge‐nitrogen Graphene Graphite Insertion Intercalation Ion storage Kinetics molecular pulling effect Nitrogen oligoaniline potassium‐ion batteries quasi‐graphite Raman spectroscopy Spectrum analysis |
title | Graphene Oxide Block Derived Edge‐Nitrogen Doped Quasi‐Graphite for High K+ Intercalation Capacity and Excellent Rate Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide%20Block%20Derived%20Edge%E2%80%90Nitrogen%20Doped%20Quasi%E2%80%90Graphite%20for%20High%20K+%20Intercalation%20Capacity%20and%20Excellent%20Rate%20Performance&rft.jtitle=Advanced%20energy%20materials&rft.au=Chi,%20Chunlei&rft.date=2023-12-01&rft.volume=13&rft.issue=46&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302055&rft_dat=%3Cproquest_cross%3E2899365356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3175-2e22f80bb217ecdc8aff08390b52da26c1c53ab71fa56e978122eed00cfdefb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899365356&rft_id=info:pmid/&rfr_iscdi=true |