Loading…

Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation

In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution a...

Full description

Saved in:
Bibliographic Details
Published in:Numerical analysis and applications 2023-12, Vol.16 (4), p.299-316
Main Authors: Aksyuk, I. A., Kireeva, A. E., Sabelfeld, K. K., Smirnov, D. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03
container_end_page 316
container_issue 4
container_start_page 299
container_title Numerical analysis and applications
container_volume 16
creator Aksyuk, I. A.
Kireeva, A. E.
Sabelfeld, K. K.
Smirnov, D. D.
description In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.
doi_str_mv 10.1134/S199542392304002X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899409820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899409820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsNQ-gLcFz9HZP8lmj6VULVQ8RMFb2KSTNiXptrsbwUfyOfpipq3oQZzLDDO_75thCLlmcMuYkHcZ0zqWXGguQALwtzMyOLQiyaU6_6mFviQj79fQh-AqlcmAPGXBlivjQ13SrG67xoTabui4WVpXh1XraWUdnQV0_eAdaWab7kjYioYV0rlp9590uuuOuityUZnG4-g7D8nr_fRl8hjNnx9mk_E8KnmShkgkSkB_UyxRmkILjajKxCwKBJUIiKUqWVowBoXilSg4GhmjLEABX6ApQQzJzcl36-yuQx_yte3cpl-Z81RrCTrlB4qdqNJZ7x1W-dbVrXEfOYP88Lj8z-N6DT9pfM9uluh-nf8XfQEDH2-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899409820</pqid></control><display><type>article</type><title>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</title><source>Springer Nature</source><creator>Aksyuk, I. A. ; Kireeva, A. E. ; Sabelfeld, K. K. ; Smirnov, D. D.</creator><creatorcontrib>Aksyuk, I. A. ; Kireeva, A. E. ; Sabelfeld, K. K. ; Smirnov, D. D.</creatorcontrib><description>In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.</description><identifier>ISSN: 1995-4239</identifier><identifier>EISSN: 1995-4247</identifier><identifier>DOI: 10.1134/S199542392304002X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Elastic bodies ; Iterative methods ; Iterative solution ; Lame functions ; Linear equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Random walk</subject><ispartof>Numerical analysis and applications, 2023-12, Vol.16 (4), p.299-316</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Aksyuk, I. A.</creatorcontrib><creatorcontrib>Kireeva, A. E.</creatorcontrib><creatorcontrib>Sabelfeld, K. K.</creatorcontrib><creatorcontrib>Smirnov, D. D.</creatorcontrib><title>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</title><title>Numerical analysis and applications</title><addtitle>Numer. Analys. Appl</addtitle><description>In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.</description><subject>Algorithms</subject><subject>Elastic bodies</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Lame functions</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Random walk</subject><issn>1995-4239</issn><issn>1995-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsNQ-gLcFz9HZP8lmj6VULVQ8RMFb2KSTNiXptrsbwUfyOfpipq3oQZzLDDO_75thCLlmcMuYkHcZ0zqWXGguQALwtzMyOLQiyaU6_6mFviQj79fQh-AqlcmAPGXBlivjQ13SrG67xoTabui4WVpXh1XraWUdnQV0_eAdaWab7kjYioYV0rlp9590uuuOuityUZnG4-g7D8nr_fRl8hjNnx9mk_E8KnmShkgkSkB_UyxRmkILjajKxCwKBJUIiKUqWVowBoXilSg4GhmjLEABX6ApQQzJzcl36-yuQx_yte3cpl-Z81RrCTrlB4qdqNJZ7x1W-dbVrXEfOYP88Lj8z-N6DT9pfM9uluh-nf8XfQEDH2-d</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Aksyuk, I. A.</creator><creator>Kireeva, A. E.</creator><creator>Sabelfeld, K. K.</creator><creator>Smirnov, D. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</title><author>Aksyuk, I. A. ; Kireeva, A. E. ; Sabelfeld, K. K. ; Smirnov, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Elastic bodies</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Lame functions</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Random walk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aksyuk, I. A.</creatorcontrib><creatorcontrib>Kireeva, A. E.</creatorcontrib><creatorcontrib>Sabelfeld, K. K.</creatorcontrib><creatorcontrib>Smirnov, D. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aksyuk, I. A.</au><au>Kireeva, A. E.</au><au>Sabelfeld, K. K.</au><au>Smirnov, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</atitle><jtitle>Numerical analysis and applications</jtitle><stitle>Numer. Analys. Appl</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>299</spage><epage>316</epage><pages>299-316</pages><issn>1995-4239</issn><eissn>1995-4247</eissn><abstract>In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S199542392304002X</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-4239
ispartof Numerical analysis and applications, 2023-12, Vol.16 (4), p.299-316
issn 1995-4239
1995-4247
language eng
recordid cdi_proquest_journals_2899409820
source Springer Nature
subjects Algorithms
Elastic bodies
Iterative methods
Iterative solution
Lame functions
Linear equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical Analysis
Random walk
title Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Simulation%20Algorithms%20for%20Iterative%20Solution%20of%20the%20Lam%C3%A9%20Equation&rft.jtitle=Numerical%20analysis%20and%20applications&rft.au=Aksyuk,%20I.%20A.&rft.date=2023-12-01&rft.volume=16&rft.issue=4&rft.spage=299&rft.epage=316&rft.pages=299-316&rft.issn=1995-4239&rft.eissn=1995-4247&rft_id=info:doi/10.1134/S199542392304002X&rft_dat=%3Cproquest_cross%3E2899409820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899409820&rft_id=info:pmid/&rfr_iscdi=true