Loading…
Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation
In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution a...
Saved in:
Published in: | Numerical analysis and applications 2023-12, Vol.16 (4), p.299-316 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03 |
container_end_page | 316 |
container_issue | 4 |
container_start_page | 299 |
container_title | Numerical analysis and applications |
container_volume | 16 |
creator | Aksyuk, I. A. Kireeva, A. E. Sabelfeld, K. K. Smirnov, D. D. |
description | In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them. |
doi_str_mv | 10.1134/S199542392304002X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899409820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899409820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsNQ-gLcFz9HZP8lmj6VULVQ8RMFb2KSTNiXptrsbwUfyOfpipq3oQZzLDDO_75thCLlmcMuYkHcZ0zqWXGguQALwtzMyOLQiyaU6_6mFviQj79fQh-AqlcmAPGXBlivjQ13SrG67xoTabui4WVpXh1XraWUdnQV0_eAdaWab7kjYioYV0rlp9590uuuOuityUZnG4-g7D8nr_fRl8hjNnx9mk_E8KnmShkgkSkB_UyxRmkILjajKxCwKBJUIiKUqWVowBoXilSg4GhmjLEABX6ApQQzJzcl36-yuQx_yte3cpl-Z81RrCTrlB4qdqNJZ7x1W-dbVrXEfOYP88Lj8z-N6DT9pfM9uluh-nf8XfQEDH2-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899409820</pqid></control><display><type>article</type><title>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</title><source>Springer Nature</source><creator>Aksyuk, I. A. ; Kireeva, A. E. ; Sabelfeld, K. K. ; Smirnov, D. D.</creator><creatorcontrib>Aksyuk, I. A. ; Kireeva, A. E. ; Sabelfeld, K. K. ; Smirnov, D. D.</creatorcontrib><description>In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.</description><identifier>ISSN: 1995-4239</identifier><identifier>EISSN: 1995-4247</identifier><identifier>DOI: 10.1134/S199542392304002X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Elastic bodies ; Iterative methods ; Iterative solution ; Lame functions ; Linear equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Random walk</subject><ispartof>Numerical analysis and applications, 2023-12, Vol.16 (4), p.299-316</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Aksyuk, I. A.</creatorcontrib><creatorcontrib>Kireeva, A. E.</creatorcontrib><creatorcontrib>Sabelfeld, K. K.</creatorcontrib><creatorcontrib>Smirnov, D. D.</creatorcontrib><title>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</title><title>Numerical analysis and applications</title><addtitle>Numer. Analys. Appl</addtitle><description>In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.</description><subject>Algorithms</subject><subject>Elastic bodies</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Lame functions</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Random walk</subject><issn>1995-4239</issn><issn>1995-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsNQ-gLcFz9HZP8lmj6VULVQ8RMFb2KSTNiXptrsbwUfyOfpipq3oQZzLDDO_75thCLlmcMuYkHcZ0zqWXGguQALwtzMyOLQiyaU6_6mFviQj79fQh-AqlcmAPGXBlivjQ13SrG67xoTabui4WVpXh1XraWUdnQV0_eAdaWab7kjYioYV0rlp9590uuuOuityUZnG4-g7D8nr_fRl8hjNnx9mk_E8KnmShkgkSkB_UyxRmkILjajKxCwKBJUIiKUqWVowBoXilSg4GhmjLEABX6ApQQzJzcl36-yuQx_yte3cpl-Z81RrCTrlB4qdqNJZ7x1W-dbVrXEfOYP88Lj8z-N6DT9pfM9uluh-nf8XfQEDH2-d</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Aksyuk, I. A.</creator><creator>Kireeva, A. E.</creator><creator>Sabelfeld, K. K.</creator><creator>Smirnov, D. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</title><author>Aksyuk, I. A. ; Kireeva, A. E. ; Sabelfeld, K. K. ; Smirnov, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Elastic bodies</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Lame functions</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Random walk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aksyuk, I. A.</creatorcontrib><creatorcontrib>Kireeva, A. E.</creatorcontrib><creatorcontrib>Sabelfeld, K. K.</creatorcontrib><creatorcontrib>Smirnov, D. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aksyuk, I. A.</au><au>Kireeva, A. E.</au><au>Sabelfeld, K. K.</au><au>Smirnov, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation</atitle><jtitle>Numerical analysis and applications</jtitle><stitle>Numer. Analys. Appl</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>299</spage><epage>316</epage><pages>299-316</pages><issn>1995-4239</issn><eissn>1995-4247</eissn><abstract>In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S199542392304002X</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-4239 |
ispartof | Numerical analysis and applications, 2023-12, Vol.16 (4), p.299-316 |
issn | 1995-4239 1995-4247 |
language | eng |
recordid | cdi_proquest_journals_2899409820 |
source | Springer Nature |
subjects | Algorithms Elastic bodies Iterative methods Iterative solution Lame functions Linear equations Mathematical analysis Mathematics Mathematics and Statistics Numerical Analysis Random walk |
title | Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Simulation%20Algorithms%20for%20Iterative%20Solution%20of%20the%20Lam%C3%A9%20Equation&rft.jtitle=Numerical%20analysis%20and%20applications&rft.au=Aksyuk,%20I.%20A.&rft.date=2023-12-01&rft.volume=16&rft.issue=4&rft.spage=299&rft.epage=316&rft.pages=299-316&rft.issn=1995-4239&rft.eissn=1995-4247&rft_id=info:doi/10.1134/S199542392304002X&rft_dat=%3Cproquest_cross%3E2899409820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-3673099554e4ab939ee7c6adbe07630547c18b110b72f3b2ea45e4b0702deac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899409820&rft_id=info:pmid/&rfr_iscdi=true |