Loading…

The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation

We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, train...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics 2023-12, Vol.39 (6), p.4581-4599
Main Authors: Thomas, Hugues, Zhang, Jian, Barfoot, Timothy D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063
container_end_page 4599
container_issue 6
container_start_page 4581
container_title IEEE transactions on robotics
container_volume 39
creator Thomas, Hugues
Zhang, Jian
Barfoot, Timothy D.
description We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.
doi_str_mv 10.1109/TRO.2023.3304239
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899470816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10252151</ieee_id><sourcerecordid>2899470816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhjdGExG9e_DQxPNiP5etN4OiJESM4Ll2u1MsgS22uyT8e0vg4Gnew_POTJ4suyV4QAiWD4vP2YBiygaMYU6ZPMt6RHKSY16U5ykLQXOGZXmZXcW4wphyiVkv-178ABr7ABFAV-uUu7YL8IjmsLb5vNtC2LkINZqCDo1rlqj16CNA7UyLnveN3jiD5gYaiMj6gCZN7dN41zu31K3zzXV2YfU6ws1p9rOv8cti9JZPZ6-T0dM0N5SLNtfcVIYKakQxrGktODNDQWnJmbVC1FJaXHFd1cJoIWldkMRRWRJbCGYFLlg_uz_u3Qb_20Fs1cp3oUknFS2l5ENckgOFj5QJPsYAVm2D2-iwVwSrg0eVPKqDR3XymCp3x4oDgH94epYIwv4A8yJt-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899470816</pqid></control><display><type>article</type><title>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</title><source>IEEE Xplore (Online service)</source><creator>Thomas, Hugues ; Zhang, Jian ; Barfoot, Timothy D.</creator><creatorcontrib>Thomas, Hugues ; Zhang, Jian ; Barfoot, Timothy D.</creatorcontrib><description>We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3304239</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive systems ; Annotations ; Deep learning ; Deep learning in robotics and automation ; Heuristic algorithms ; Indoor navigation ; Laser radar ; learning and adaptive systems ; Lidar ; Lifelong learning ; Multiagent systems ; Navigation ; Navigation systems ; Prediction algorithms ; reactive and sensor-based planning ; Reactive power ; Robotics and automation ; Robots ; Self-supervised learning ; Semantic segmentation ; Semantics ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4581-4599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063</cites><orcidid>0000-0002-8010-6651 ; 0000-0003-3899-631X ; 0000-0001-8511-8523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10252151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Thomas, Hugues</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Barfoot, Timothy D.</creatorcontrib><title>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.</description><subject>Adaptive systems</subject><subject>Annotations</subject><subject>Deep learning</subject><subject>Deep learning in robotics and automation</subject><subject>Heuristic algorithms</subject><subject>Indoor navigation</subject><subject>Laser radar</subject><subject>learning and adaptive systems</subject><subject>Lidar</subject><subject>Lifelong learning</subject><subject>Multiagent systems</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Prediction algorithms</subject><subject>reactive and sensor-based planning</subject><subject>Reactive power</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Self-supervised learning</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhjdGExG9e_DQxPNiP5etN4OiJESM4Ll2u1MsgS22uyT8e0vg4Gnew_POTJ4suyV4QAiWD4vP2YBiygaMYU6ZPMt6RHKSY16U5ykLQXOGZXmZXcW4wphyiVkv-178ABr7ABFAV-uUu7YL8IjmsLb5vNtC2LkINZqCDo1rlqj16CNA7UyLnveN3jiD5gYaiMj6gCZN7dN41zu31K3zzXV2YfU6ws1p9rOv8cti9JZPZ6-T0dM0N5SLNtfcVIYKakQxrGktODNDQWnJmbVC1FJaXHFd1cJoIWldkMRRWRJbCGYFLlg_uz_u3Qb_20Fs1cp3oUknFS2l5ENckgOFj5QJPsYAVm2D2-iwVwSrg0eVPKqDR3XymCp3x4oDgH94epYIwv4A8yJt-w</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Thomas, Hugues</creator><creator>Zhang, Jian</creator><creator>Barfoot, Timothy D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8010-6651</orcidid><orcidid>https://orcid.org/0000-0003-3899-631X</orcidid><orcidid>https://orcid.org/0000-0001-8511-8523</orcidid></search><sort><creationdate>202312</creationdate><title>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</title><author>Thomas, Hugues ; Zhang, Jian ; Barfoot, Timothy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Annotations</topic><topic>Deep learning</topic><topic>Deep learning in robotics and automation</topic><topic>Heuristic algorithms</topic><topic>Indoor navigation</topic><topic>Laser radar</topic><topic>learning and adaptive systems</topic><topic>Lidar</topic><topic>Lifelong learning</topic><topic>Multiagent systems</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Prediction algorithms</topic><topic>reactive and sensor-based planning</topic><topic>Reactive power</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Self-supervised learning</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Hugues</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Barfoot, Timothy D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Hugues</au><au>Zhang, Jian</au><au>Barfoot, Timothy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-12</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4581</spage><epage>4599</epage><pages>4581-4599</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3304239</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8010-6651</orcidid><orcidid>https://orcid.org/0000-0003-3899-631X</orcidid><orcidid>https://orcid.org/0000-0001-8511-8523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4581-4599
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2899470816
source IEEE Xplore (Online service)
subjects Adaptive systems
Annotations
Deep learning
Deep learning in robotics and automation
Heuristic algorithms
Indoor navigation
Laser radar
learning and adaptive systems
Lidar
Lifelong learning
Multiagent systems
Navigation
Navigation systems
Prediction algorithms
reactive and sensor-based planning
Reactive power
Robotics and automation
Robots
Self-supervised learning
Semantic segmentation
Semantics
Trajectory
title The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Foreseeable%20Future:%20Self-Supervised%20Learning%20to%20Predict%20Dynamic%20Scenes%20for%20Indoor%20Navigation&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Thomas,%20Hugues&rft.date=2023-12&rft.volume=39&rft.issue=6&rft.spage=4581&rft.epage=4599&rft.pages=4581-4599&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3304239&rft_dat=%3Cproquest_cross%3E2899470816%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899470816&rft_id=info:pmid/&rft_ieee_id=10252151&rfr_iscdi=true