Loading…
The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation
We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, train...
Saved in:
Published in: | IEEE transactions on robotics 2023-12, Vol.39 (6), p.4581-4599 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063 |
container_end_page | 4599 |
container_issue | 6 |
container_start_page | 4581 |
container_title | IEEE transactions on robotics |
container_volume | 39 |
creator | Thomas, Hugues Zhang, Jian Barfoot, Timothy D. |
description | We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations. |
doi_str_mv | 10.1109/TRO.2023.3304239 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899470816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10252151</ieee_id><sourcerecordid>2899470816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhjdGExG9e_DQxPNiP5etN4OiJESM4Ll2u1MsgS22uyT8e0vg4Gnew_POTJ4suyV4QAiWD4vP2YBiygaMYU6ZPMt6RHKSY16U5ykLQXOGZXmZXcW4wphyiVkv-178ABr7ABFAV-uUu7YL8IjmsLb5vNtC2LkINZqCDo1rlqj16CNA7UyLnveN3jiD5gYaiMj6gCZN7dN41zu31K3zzXV2YfU6ws1p9rOv8cti9JZPZ6-T0dM0N5SLNtfcVIYKakQxrGktODNDQWnJmbVC1FJaXHFd1cJoIWldkMRRWRJbCGYFLlg_uz_u3Qb_20Fs1cp3oUknFS2l5ENckgOFj5QJPsYAVm2D2-iwVwSrg0eVPKqDR3XymCp3x4oDgH94epYIwv4A8yJt-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899470816</pqid></control><display><type>article</type><title>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</title><source>IEEE Xplore (Online service)</source><creator>Thomas, Hugues ; Zhang, Jian ; Barfoot, Timothy D.</creator><creatorcontrib>Thomas, Hugues ; Zhang, Jian ; Barfoot, Timothy D.</creatorcontrib><description>We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3304239</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive systems ; Annotations ; Deep learning ; Deep learning in robotics and automation ; Heuristic algorithms ; Indoor navigation ; Laser radar ; learning and adaptive systems ; Lidar ; Lifelong learning ; Multiagent systems ; Navigation ; Navigation systems ; Prediction algorithms ; reactive and sensor-based planning ; Reactive power ; Robotics and automation ; Robots ; Self-supervised learning ; Semantic segmentation ; Semantics ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4581-4599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063</cites><orcidid>0000-0002-8010-6651 ; 0000-0003-3899-631X ; 0000-0001-8511-8523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10252151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Thomas, Hugues</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Barfoot, Timothy D.</creatorcontrib><title>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.</description><subject>Adaptive systems</subject><subject>Annotations</subject><subject>Deep learning</subject><subject>Deep learning in robotics and automation</subject><subject>Heuristic algorithms</subject><subject>Indoor navigation</subject><subject>Laser radar</subject><subject>learning and adaptive systems</subject><subject>Lidar</subject><subject>Lifelong learning</subject><subject>Multiagent systems</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Prediction algorithms</subject><subject>reactive and sensor-based planning</subject><subject>Reactive power</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Self-supervised learning</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhjdGExG9e_DQxPNiP5etN4OiJESM4Ll2u1MsgS22uyT8e0vg4Gnew_POTJ4suyV4QAiWD4vP2YBiygaMYU6ZPMt6RHKSY16U5ykLQXOGZXmZXcW4wphyiVkv-178ABr7ABFAV-uUu7YL8IjmsLb5vNtC2LkINZqCDo1rlqj16CNA7UyLnveN3jiD5gYaiMj6gCZN7dN41zu31K3zzXV2YfU6ws1p9rOv8cti9JZPZ6-T0dM0N5SLNtfcVIYKakQxrGktODNDQWnJmbVC1FJaXHFd1cJoIWldkMRRWRJbCGYFLlg_uz_u3Qb_20Fs1cp3oUknFS2l5ENckgOFj5QJPsYAVm2D2-iwVwSrg0eVPKqDR3XymCp3x4oDgH94epYIwv4A8yJt-w</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Thomas, Hugues</creator><creator>Zhang, Jian</creator><creator>Barfoot, Timothy D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8010-6651</orcidid><orcidid>https://orcid.org/0000-0003-3899-631X</orcidid><orcidid>https://orcid.org/0000-0001-8511-8523</orcidid></search><sort><creationdate>202312</creationdate><title>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</title><author>Thomas, Hugues ; Zhang, Jian ; Barfoot, Timothy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Annotations</topic><topic>Deep learning</topic><topic>Deep learning in robotics and automation</topic><topic>Heuristic algorithms</topic><topic>Indoor navigation</topic><topic>Laser radar</topic><topic>learning and adaptive systems</topic><topic>Lidar</topic><topic>Lifelong learning</topic><topic>Multiagent systems</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Prediction algorithms</topic><topic>reactive and sensor-based planning</topic><topic>Reactive power</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Self-supervised learning</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Hugues</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Barfoot, Timothy D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Hugues</au><au>Zhang, Jian</au><au>Barfoot, Timothy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-12</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4581</spage><epage>4599</epage><pages>4581-4599</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3304239</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8010-6651</orcidid><orcidid>https://orcid.org/0000-0003-3899-631X</orcidid><orcidid>https://orcid.org/0000-0001-8511-8523</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4581-4599 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2899470816 |
source | IEEE Xplore (Online service) |
subjects | Adaptive systems Annotations Deep learning Deep learning in robotics and automation Heuristic algorithms Indoor navigation Laser radar learning and adaptive systems Lidar Lifelong learning Multiagent systems Navigation Navigation systems Prediction algorithms reactive and sensor-based planning Reactive power Robotics and automation Robots Self-supervised learning Semantic segmentation Semantics Trajectory |
title | The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Foreseeable%20Future:%20Self-Supervised%20Learning%20to%20Predict%20Dynamic%20Scenes%20for%20Indoor%20Navigation&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Thomas,%20Hugues&rft.date=2023-12&rft.volume=39&rft.issue=6&rft.spage=4581&rft.epage=4599&rft.pages=4581-4599&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3304239&rft_dat=%3Cproquest_cross%3E2899470816%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-a4cbc252c567d2d543c7522843ff55d99f0b4abd5ca592d615672981f653f5063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899470816&rft_id=info:pmid/&rft_ieee_id=10252151&rfr_iscdi=true |