Loading…
Pulsar-wind-nebula-powered Galactic center X-ray filament G0.13-0.11: Proof of the synchrotron nature by IXPE
We report the discovery of X-ray polarization from the X-ray-bright filament. G0.13-0.11 in the Galactic center (GC) region. This filament features a bright, hard X-ray source that is most plausibly a pulsar wind nebula (PWN) and an extended and structured diffuse component. Combining the polarizati...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the discovery of X-ray polarization from the X-ray-bright filament. G0.13-0.11 in the Galactic center (GC) region. This filament features a bright, hard X-ray source that is most plausibly a pulsar wind nebula (PWN) and an extended and structured diffuse component. Combining the polarization signal from IXPE with the imaging/spectroscopic data from Chandra, we find that X-ray emission of G0.13-0.11 is highly polarized PD=\(57(\pm18)\)% in the 3-6 keV band, while the polarization angle is PA=\(21^\circ(\pm9^\circ)\). This high degree of polarization proves the synchrotron origin of the X-ray emission from G0.13-0.11. In turn, the measured polarization angle implies that the X-ray emission is polarized approximately perpendicular to a sequence of nonthermal radio filaments that may be part of the GC Radio Arc. The magnetic field on the order of \(100\,{\rm\mu G}\) appears to be preferentially ordered along the filaments. The above field strength is the fiducial value that makes our model self-consistent, while the other conclusions are largely model independent. |
---|---|
ISSN: | 2331-8422 |