Loading…
Channel Charting for Streaming CSI Data
Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sueda Taner Guillaud, Maxime Tirkkonen, Olav Studer, Christoph |
description | Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2899515585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899515585</sourcerecordid><originalsourceid>FETCH-proquest_journals_28995155853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd85IzMtLzVEA0kUlmXnpCmn5RQrBJUWpibkgnnOwp4JLYkkiDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFG1lYWpoamppamBoTpwoAE14u8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899515585</pqid></control><display><type>article</type><title>Channel Charting for Streaming CSI Data</title><source>Publicly Available Content Database</source><creator>Sueda Taner ; Guillaud, Maxime ; Tirkkonen, Olav ; Studer, Christoph</creator><creatorcontrib>Sueda Taner ; Guillaud, Maxime ; Tirkkonen, Olav ; Studer, Christoph</creatorcontrib><description>Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2899515585?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sueda Taner</creatorcontrib><creatorcontrib>Guillaud, Maxime</creatorcontrib><creatorcontrib>Tirkkonen, Olav</creatorcontrib><creatorcontrib>Studer, Christoph</creatorcontrib><title>Channel Charting for Streaming CSI Data</title><title>arXiv.org</title><description>Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data.</description><subject>Datasets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd85IzMtLzVEA0kUlmXnpCmn5RQrBJUWpibkgnnOwp4JLYkkiDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFG1lYWpoamppamBoTpwoAE14u8Q</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Sueda Taner</creator><creator>Guillaud, Maxime</creator><creator>Tirkkonen, Olav</creator><creator>Studer, Christoph</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231207</creationdate><title>Channel Charting for Streaming CSI Data</title><author>Sueda Taner ; Guillaud, Maxime ; Tirkkonen, Olav ; Studer, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28995155853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><toplevel>online_resources</toplevel><creatorcontrib>Sueda Taner</creatorcontrib><creatorcontrib>Guillaud, Maxime</creatorcontrib><creatorcontrib>Tirkkonen, Olav</creatorcontrib><creatorcontrib>Studer, Christoph</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sueda Taner</au><au>Guillaud, Maxime</au><au>Tirkkonen, Olav</au><au>Studer, Christoph</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Channel Charting for Streaming CSI Data</atitle><jtitle>arXiv.org</jtitle><date>2023-12-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2899515585 |
source | Publicly Available Content Database |
subjects | Datasets |
title | Channel Charting for Streaming CSI Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Channel%20Charting%20for%20Streaming%20CSI%20Data&rft.jtitle=arXiv.org&rft.au=Sueda%20Taner&rft.date=2023-12-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2899515585%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28995155853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899515585&rft_id=info:pmid/&rfr_iscdi=true |