Loading…

Channel Charting for Streaming CSI Data

Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Sueda Taner, Guillaud, Maxime, Tirkkonen, Olav, Studer, Christoph
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sueda Taner
Guillaud, Maxime
Tirkkonen, Olav
Studer, Christoph
description Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2899515585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899515585</sourcerecordid><originalsourceid>FETCH-proquest_journals_28995155853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd85IzMtLzVEA0kUlmXnpCmn5RQrBJUWpibkgnnOwp4JLYkkiDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFG1lYWpoamppamBoTpwoAE14u8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899515585</pqid></control><display><type>article</type><title>Channel Charting for Streaming CSI Data</title><source>Publicly Available Content Database</source><creator>Sueda Taner ; Guillaud, Maxime ; Tirkkonen, Olav ; Studer, Christoph</creator><creatorcontrib>Sueda Taner ; Guillaud, Maxime ; Tirkkonen, Olav ; Studer, Christoph</creatorcontrib><description>Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2899515585?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sueda Taner</creatorcontrib><creatorcontrib>Guillaud, Maxime</creatorcontrib><creatorcontrib>Tirkkonen, Olav</creatorcontrib><creatorcontrib>Studer, Christoph</creatorcontrib><title>Channel Charting for Streaming CSI Data</title><title>arXiv.org</title><description>Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data.</description><subject>Datasets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd85IzMtLzVEA0kUlmXnpCmn5RQrBJUWpibkgnnOwp4JLYkkiDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFG1lYWpoamppamBoTpwoAE14u8Q</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Sueda Taner</creator><creator>Guillaud, Maxime</creator><creator>Tirkkonen, Olav</creator><creator>Studer, Christoph</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231207</creationdate><title>Channel Charting for Streaming CSI Data</title><author>Sueda Taner ; Guillaud, Maxime ; Tirkkonen, Olav ; Studer, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28995155853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><toplevel>online_resources</toplevel><creatorcontrib>Sueda Taner</creatorcontrib><creatorcontrib>Guillaud, Maxime</creatorcontrib><creatorcontrib>Tirkkonen, Olav</creatorcontrib><creatorcontrib>Studer, Christoph</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sueda Taner</au><au>Guillaud, Maxime</au><au>Tirkkonen, Olav</au><au>Studer, Christoph</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Channel Charting for Streaming CSI Data</atitle><jtitle>arXiv.org</jtitle><date>2023-12-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Channel charting (CC) applies dimensionality reduction to channel state information (CSI) data at the infrastructure basestation side with the goal of extracting pseudo-position information for each user. The self-supervised nature of CC enables predictive tasks that depend on user position without requiring any ground-truth position information. In this work, we focus on the practically relevant streaming CSI data scenario, in which CSI is constantly estimated. To deal with storage limitations, we develop a novel streaming CC architecture that maintains a small core CSI dataset from which the channel charts are learned. Curation of the core CSI dataset is achieved using a min-max-similarity criterion. Numerical validation with measured CSI data demonstrates that our method approaches the accuracy obtained from the complete CSI dataset while using only a fraction of CSI storage and avoiding catastrophic forgetting of old CSI data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2899515585
source Publicly Available Content Database
subjects Datasets
title Channel Charting for Streaming CSI Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Channel%20Charting%20for%20Streaming%20CSI%20Data&rft.jtitle=arXiv.org&rft.au=Sueda%20Taner&rft.date=2023-12-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2899515585%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28995155853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899515585&rft_id=info:pmid/&rfr_iscdi=true