Loading…

Noise-correlation spectrum for a pair of spin qubits in silicon

Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we a...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2023-12, Vol.19 (12), p.1793-1798
Main Authors: Yoneda, J., Rojas-Arias, J. S., Stano, P., Takeda, K., Noiri, A., Nakajima, T., Loss, D., Tarucha, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3
cites cdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3
container_end_page 1798
container_issue 12
container_start_page 1793
container_title Nature physics
container_volume 19
creator Yoneda, J.
Rojas-Arias, J. S.
Stano, P.
Takeda, K.
Noiri, A.
Nakajima, T.
Loss, D.
Tarucha, S.
description Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits. Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.
doi_str_mv 10.1038/s41567-023-02238-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899560724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899560724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62hek8dKpGgVim50HZJMIintZJrMLPz3Rkd05-JyD5dzzoUPgEuMrjGi8qYw3HIBEaF1CJWQH4EFFqyFhEl8_KsFPQVnpWwRYoRjugC3zykWD13K2e_MGFPflMG7MU_7JqTcmGYwMTcp1HPsm8Nk41iaqkrcRZf6c3ASzK74i5-9BG8P96-rR7h5WT-t7jbQUaxGGFQQoiPSMO4E7jrDibRYWKE6g4M1UmBmuMLWtbZqqxBybSeppUZg4QNdgqu5d8jpMPky6m2acl9faiKVajkShFUXmV0up1KyD3rIcW_yh8ZIf4HSMyhdQelvUJrXEJ1DpZr7d5__qv9JfQKaKGsL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899560724</pqid></control><display><type>article</type><title>Noise-correlation spectrum for a pair of spin qubits in silicon</title><source>Nature</source><creator>Yoneda, J. ; Rojas-Arias, J. S. ; Stano, P. ; Takeda, K. ; Noiri, A. ; Nakajima, T. ; Loss, D. ; Tarucha, S.</creator><creatorcontrib>Yoneda, J. ; Rojas-Arias, J. S. ; Stano, P. ; Takeda, K. ; Noiri, A. ; Nakajima, T. ; Loss, D. ; Tarucha, S.</creatorcontrib><description>Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits. Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02238-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/925/927/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cross correlation ; Electric fields ; Electric noise ; Errors ; Fault tolerance ; Fluctuations ; Mathematical and Computational Physics ; Molecular ; Noise ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum computers ; Qubits (quantum computing) ; Silicon ; Spin exchange ; Theoretical</subject><ispartof>Nature physics, 2023-12, Vol.19 (12), p.1793-1798</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</citedby><cites>FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</cites><orcidid>0000-0003-1240-1103 ; 0000-0001-5835-0765 ; 0000-0001-9145-0303 ; 0000-0003-0743-3696 ; 0000-0001-7465-0135 ; 0000-0003-3669-0288 ; 0000-0001-6759-6441 ; 0000-0001-5176-3073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yoneda, J.</creatorcontrib><creatorcontrib>Rojas-Arias, J. S.</creatorcontrib><creatorcontrib>Stano, P.</creatorcontrib><creatorcontrib>Takeda, K.</creatorcontrib><creatorcontrib>Noiri, A.</creatorcontrib><creatorcontrib>Nakajima, T.</creatorcontrib><creatorcontrib>Loss, D.</creatorcontrib><creatorcontrib>Tarucha, S.</creatorcontrib><title>Noise-correlation spectrum for a pair of spin qubits in silicon</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits. Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.</description><subject>639/766/483/2802</subject><subject>639/925/927/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cross correlation</subject><subject>Electric fields</subject><subject>Electric noise</subject><subject>Errors</subject><subject>Fault tolerance</subject><subject>Fluctuations</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Noise</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Qubits (quantum computing)</subject><subject>Silicon</subject><subject>Spin exchange</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62hek8dKpGgVim50HZJMIintZJrMLPz3Rkd05-JyD5dzzoUPgEuMrjGi8qYw3HIBEaF1CJWQH4EFFqyFhEl8_KsFPQVnpWwRYoRjugC3zykWD13K2e_MGFPflMG7MU_7JqTcmGYwMTcp1HPsm8Nk41iaqkrcRZf6c3ASzK74i5-9BG8P96-rR7h5WT-t7jbQUaxGGFQQoiPSMO4E7jrDibRYWKE6g4M1UmBmuMLWtbZqqxBybSeppUZg4QNdgqu5d8jpMPky6m2acl9faiKVajkShFUXmV0up1KyD3rIcW_yh8ZIf4HSMyhdQelvUJrXEJ1DpZr7d5__qv9JfQKaKGsL</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yoneda, J.</creator><creator>Rojas-Arias, J. S.</creator><creator>Stano, P.</creator><creator>Takeda, K.</creator><creator>Noiri, A.</creator><creator>Nakajima, T.</creator><creator>Loss, D.</creator><creator>Tarucha, S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1240-1103</orcidid><orcidid>https://orcid.org/0000-0001-5835-0765</orcidid><orcidid>https://orcid.org/0000-0001-9145-0303</orcidid><orcidid>https://orcid.org/0000-0003-0743-3696</orcidid><orcidid>https://orcid.org/0000-0001-7465-0135</orcidid><orcidid>https://orcid.org/0000-0003-3669-0288</orcidid><orcidid>https://orcid.org/0000-0001-6759-6441</orcidid><orcidid>https://orcid.org/0000-0001-5176-3073</orcidid></search><sort><creationdate>20231201</creationdate><title>Noise-correlation spectrum for a pair of spin qubits in silicon</title><author>Yoneda, J. ; Rojas-Arias, J. S. ; Stano, P. ; Takeda, K. ; Noiri, A. ; Nakajima, T. ; Loss, D. ; Tarucha, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/483/2802</topic><topic>639/925/927/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cross correlation</topic><topic>Electric fields</topic><topic>Electric noise</topic><topic>Errors</topic><topic>Fault tolerance</topic><topic>Fluctuations</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Noise</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Qubits (quantum computing)</topic><topic>Silicon</topic><topic>Spin exchange</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoneda, J.</creatorcontrib><creatorcontrib>Rojas-Arias, J. S.</creatorcontrib><creatorcontrib>Stano, P.</creatorcontrib><creatorcontrib>Takeda, K.</creatorcontrib><creatorcontrib>Noiri, A.</creatorcontrib><creatorcontrib>Nakajima, T.</creatorcontrib><creatorcontrib>Loss, D.</creatorcontrib><creatorcontrib>Tarucha, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoneda, J.</au><au>Rojas-Arias, J. S.</au><au>Stano, P.</au><au>Takeda, K.</au><au>Noiri, A.</au><au>Nakajima, T.</au><au>Loss, D.</au><au>Tarucha, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-correlation spectrum for a pair of spin qubits in silicon</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>1793</spage><epage>1798</epage><pages>1793-1798</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits. Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02238-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1240-1103</orcidid><orcidid>https://orcid.org/0000-0001-5835-0765</orcidid><orcidid>https://orcid.org/0000-0001-9145-0303</orcidid><orcidid>https://orcid.org/0000-0003-0743-3696</orcidid><orcidid>https://orcid.org/0000-0001-7465-0135</orcidid><orcidid>https://orcid.org/0000-0003-3669-0288</orcidid><orcidid>https://orcid.org/0000-0001-6759-6441</orcidid><orcidid>https://orcid.org/0000-0001-5176-3073</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2023-12, Vol.19 (12), p.1793-1798
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2899560724
source Nature
subjects 639/766/483/2802
639/925/927/481
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Cross correlation
Electric fields
Electric noise
Errors
Fault tolerance
Fluctuations
Mathematical and Computational Physics
Molecular
Noise
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum computers
Qubits (quantum computing)
Silicon
Spin exchange
Theoretical
title Noise-correlation spectrum for a pair of spin qubits in silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-correlation%20spectrum%20for%20a%20pair%20of%20spin%20qubits%20in%20silicon&rft.jtitle=Nature%20physics&rft.au=Yoneda,%20J.&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=1793&rft.epage=1798&rft.pages=1793-1798&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02238-6&rft_dat=%3Cproquest_cross%3E2899560724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899560724&rft_id=info:pmid/&rfr_iscdi=true