Loading…
Noise-correlation spectrum for a pair of spin qubits in silicon
Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we a...
Saved in:
Published in: | Nature physics 2023-12, Vol.19 (12), p.1793-1798 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3 |
container_end_page | 1798 |
container_issue | 12 |
container_start_page | 1793 |
container_title | Nature physics |
container_volume | 19 |
creator | Yoneda, J. Rojas-Arias, J. S. Stano, P. Takeda, K. Noiri, A. Nakajima, T. Loss, D. Tarucha, S. |
description | Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits.
Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors. |
doi_str_mv | 10.1038/s41567-023-02238-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899560724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899560724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62hek8dKpGgVim50HZJMIintZJrMLPz3Rkd05-JyD5dzzoUPgEuMrjGi8qYw3HIBEaF1CJWQH4EFFqyFhEl8_KsFPQVnpWwRYoRjugC3zykWD13K2e_MGFPflMG7MU_7JqTcmGYwMTcp1HPsm8Nk41iaqkrcRZf6c3ASzK74i5-9BG8P96-rR7h5WT-t7jbQUaxGGFQQoiPSMO4E7jrDibRYWKE6g4M1UmBmuMLWtbZqqxBybSeppUZg4QNdgqu5d8jpMPky6m2acl9faiKVajkShFUXmV0up1KyD3rIcW_yh8ZIf4HSMyhdQelvUJrXEJ1DpZr7d5__qv9JfQKaKGsL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899560724</pqid></control><display><type>article</type><title>Noise-correlation spectrum for a pair of spin qubits in silicon</title><source>Nature</source><creator>Yoneda, J. ; Rojas-Arias, J. S. ; Stano, P. ; Takeda, K. ; Noiri, A. ; Nakajima, T. ; Loss, D. ; Tarucha, S.</creator><creatorcontrib>Yoneda, J. ; Rojas-Arias, J. S. ; Stano, P. ; Takeda, K. ; Noiri, A. ; Nakajima, T. ; Loss, D. ; Tarucha, S.</creatorcontrib><description>Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits.
Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02238-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/925/927/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cross correlation ; Electric fields ; Electric noise ; Errors ; Fault tolerance ; Fluctuations ; Mathematical and Computational Physics ; Molecular ; Noise ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum computers ; Qubits (quantum computing) ; Silicon ; Spin exchange ; Theoretical</subject><ispartof>Nature physics, 2023-12, Vol.19 (12), p.1793-1798</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</citedby><cites>FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</cites><orcidid>0000-0003-1240-1103 ; 0000-0001-5835-0765 ; 0000-0001-9145-0303 ; 0000-0003-0743-3696 ; 0000-0001-7465-0135 ; 0000-0003-3669-0288 ; 0000-0001-6759-6441 ; 0000-0001-5176-3073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yoneda, J.</creatorcontrib><creatorcontrib>Rojas-Arias, J. S.</creatorcontrib><creatorcontrib>Stano, P.</creatorcontrib><creatorcontrib>Takeda, K.</creatorcontrib><creatorcontrib>Noiri, A.</creatorcontrib><creatorcontrib>Nakajima, T.</creatorcontrib><creatorcontrib>Loss, D.</creatorcontrib><creatorcontrib>Tarucha, S.</creatorcontrib><title>Noise-correlation spectrum for a pair of spin qubits in silicon</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits.
Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.</description><subject>639/766/483/2802</subject><subject>639/925/927/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cross correlation</subject><subject>Electric fields</subject><subject>Electric noise</subject><subject>Errors</subject><subject>Fault tolerance</subject><subject>Fluctuations</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Noise</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Qubits (quantum computing)</subject><subject>Silicon</subject><subject>Spin exchange</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62hek8dKpGgVim50HZJMIintZJrMLPz3Rkd05-JyD5dzzoUPgEuMrjGi8qYw3HIBEaF1CJWQH4EFFqyFhEl8_KsFPQVnpWwRYoRjugC3zykWD13K2e_MGFPflMG7MU_7JqTcmGYwMTcp1HPsm8Nk41iaqkrcRZf6c3ASzK74i5-9BG8P96-rR7h5WT-t7jbQUaxGGFQQoiPSMO4E7jrDibRYWKE6g4M1UmBmuMLWtbZqqxBybSeppUZg4QNdgqu5d8jpMPky6m2acl9faiKVajkShFUXmV0up1KyD3rIcW_yh8ZIf4HSMyhdQelvUJrXEJ1DpZr7d5__qv9JfQKaKGsL</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yoneda, J.</creator><creator>Rojas-Arias, J. S.</creator><creator>Stano, P.</creator><creator>Takeda, K.</creator><creator>Noiri, A.</creator><creator>Nakajima, T.</creator><creator>Loss, D.</creator><creator>Tarucha, S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1240-1103</orcidid><orcidid>https://orcid.org/0000-0001-5835-0765</orcidid><orcidid>https://orcid.org/0000-0001-9145-0303</orcidid><orcidid>https://orcid.org/0000-0003-0743-3696</orcidid><orcidid>https://orcid.org/0000-0001-7465-0135</orcidid><orcidid>https://orcid.org/0000-0003-3669-0288</orcidid><orcidid>https://orcid.org/0000-0001-6759-6441</orcidid><orcidid>https://orcid.org/0000-0001-5176-3073</orcidid></search><sort><creationdate>20231201</creationdate><title>Noise-correlation spectrum for a pair of spin qubits in silicon</title><author>Yoneda, J. ; Rojas-Arias, J. S. ; Stano, P. ; Takeda, K. ; Noiri, A. ; Nakajima, T. ; Loss, D. ; Tarucha, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/483/2802</topic><topic>639/925/927/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cross correlation</topic><topic>Electric fields</topic><topic>Electric noise</topic><topic>Errors</topic><topic>Fault tolerance</topic><topic>Fluctuations</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Noise</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Qubits (quantum computing)</topic><topic>Silicon</topic><topic>Spin exchange</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoneda, J.</creatorcontrib><creatorcontrib>Rojas-Arias, J. S.</creatorcontrib><creatorcontrib>Stano, P.</creatorcontrib><creatorcontrib>Takeda, K.</creatorcontrib><creatorcontrib>Noiri, A.</creatorcontrib><creatorcontrib>Nakajima, T.</creatorcontrib><creatorcontrib>Loss, D.</creatorcontrib><creatorcontrib>Tarucha, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoneda, J.</au><au>Rojas-Arias, J. S.</au><au>Stano, P.</au><au>Takeda, K.</au><au>Noiri, A.</au><au>Nakajima, T.</au><au>Loss, D.</au><au>Tarucha, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-correlation spectrum for a pair of spin qubits in silicon</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>1793</spage><epage>1798</epage><pages>1793-1798</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits.
Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02238-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1240-1103</orcidid><orcidid>https://orcid.org/0000-0001-5835-0765</orcidid><orcidid>https://orcid.org/0000-0001-9145-0303</orcidid><orcidid>https://orcid.org/0000-0003-0743-3696</orcidid><orcidid>https://orcid.org/0000-0001-7465-0135</orcidid><orcidid>https://orcid.org/0000-0003-3669-0288</orcidid><orcidid>https://orcid.org/0000-0001-6759-6441</orcidid><orcidid>https://orcid.org/0000-0001-5176-3073</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2023-12, Vol.19 (12), p.1793-1798 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2899560724 |
source | Nature |
subjects | 639/766/483/2802 639/925/927/481 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Cross correlation Electric fields Electric noise Errors Fault tolerance Fluctuations Mathematical and Computational Physics Molecular Noise Optical and Plasma Physics Physics Physics and Astronomy Quantum computers Qubits (quantum computing) Silicon Spin exchange Theoretical |
title | Noise-correlation spectrum for a pair of spin qubits in silicon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-correlation%20spectrum%20for%20a%20pair%20of%20spin%20qubits%20in%20silicon&rft.jtitle=Nature%20physics&rft.au=Yoneda,%20J.&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=1793&rft.epage=1798&rft.pages=1793-1798&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02238-6&rft_dat=%3Cproquest_cross%3E2899560724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f9f77d28a46c71dda628b17b79da1fba8714a691bc5b871b900c5d83b3a717ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899560724&rft_id=info:pmid/&rfr_iscdi=true |