Loading…

Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models

Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the ca...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research letters 2024-01, Vol.19 (1), p.14033
Main Authors: Steinert, Norman J, Debolskiy, Matvey V, Burke, Eleanor J, García-Pereira, Félix, Lee, Hanna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3
cites cdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3
container_end_page
container_issue 1
container_start_page 14033
container_title Environmental research letters
container_volume 19
creator Steinert, Norman J
Debolskiy, Matvey V
Burke, Eleanor J
García-Pereira, Félix
Lee, Hanna
description Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km 2 , where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs.
doi_str_mv 10.1088/1748-9326/ad10d7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899678705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2bc48fef06a04c5da4edfe2f33dcd27f</doaj_id><sourcerecordid>2899678705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxRtRcF29ewx48OK4lY_upI8y7OrAih70aqhOKkOGnk6b9Aj-92a2dd2DeEmFx6sfVfWa5iWHtxyMueJamU0vRXeFnoPXj5qLe-nxg__T5lkpB4BWtdpcNN-uf-B4wiVOezZTPmLIqSzMU4hTXGKaCgsps_2YBhwfOjATMipLPOJChcWJbT_uPnfMjXcKOyZPY3nePAk4Fnrxu142X2-uv2w_bG4_vd9t391unNJy2Tg0vifiNCBI46HrtEbgOvChM0TSK-FgGIAPxkEHPgBAp1vRKi6xJScvm93K9QkPds51hvzTJoz2Tkh5bzEv0Y1kxeCUCRSgQ1Cu9ajIBxJBSu-80KGy2MpyOdb9JjuljLYeuRX11dKIanm1Wuacvp_qFewhnfJUN7TC9H2njYa2uuAPKJWSKdwPxuHMM_acij2nYtfQasubtSWm-S_zP_bX_7BTHi3vLbfAFUhpZx_kL_Z1pP0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899678705</pqid></control><display><type>article</type><title>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Steinert, Norman J ; Debolskiy, Matvey V ; Burke, Eleanor J ; García-Pereira, Félix ; Lee, Hanna</creator><creatorcontrib>Steinert, Norman J ; Debolskiy, Matvey V ; Burke, Eleanor J ; García-Pereira, Félix ; Lee, Hanna</creatorcontrib><description>Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km 2 , where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad10d7</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Assessments ; Carbon ; Climate change ; Climate models ; Coupling ; cryosphere ; Earth system models ; Estimates ; frozen ground ; Global warming ; ground temperatures ; Hydrology ; Permafrost ; Soil hydrology ; soil thermodynamics ; Soils ; Thermodynamics</subject><ispartof>Environmental research letters, 2024-01, Vol.19 (1), p.14033</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</citedby><cites>FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</cites><orcidid>0000-0002-9634-3627 ; 0000-0002-2158-141X ; 0000-0001-8491-1175 ; 0000-0002-2003-4377 ; 0000-0002-2154-5857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2899678705?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,26567,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Steinert, Norman J</creatorcontrib><creatorcontrib>Debolskiy, Matvey V</creatorcontrib><creatorcontrib>Burke, Eleanor J</creatorcontrib><creatorcontrib>García-Pereira, Félix</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><title>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km 2 , where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs.</description><subject>Assessments</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Coupling</subject><subject>cryosphere</subject><subject>Earth system models</subject><subject>Estimates</subject><subject>frozen ground</subject><subject>Global warming</subject><subject>ground temperatures</subject><subject>Hydrology</subject><subject>Permafrost</subject><subject>Soil hydrology</subject><subject>soil thermodynamics</subject><subject>Soils</subject><subject>Thermodynamics</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc2LFDEQxRtRcF29ewx48OK4lY_upI8y7OrAih70aqhOKkOGnk6b9Aj-92a2dd2DeEmFx6sfVfWa5iWHtxyMueJamU0vRXeFnoPXj5qLe-nxg__T5lkpB4BWtdpcNN-uf-B4wiVOezZTPmLIqSzMU4hTXGKaCgsps_2YBhwfOjATMipLPOJChcWJbT_uPnfMjXcKOyZPY3nePAk4Fnrxu142X2-uv2w_bG4_vd9t391unNJy2Tg0vifiNCBI46HrtEbgOvChM0TSK-FgGIAPxkEHPgBAp1vRKi6xJScvm93K9QkPds51hvzTJoz2Tkh5bzEv0Y1kxeCUCRSgQ1Cu9ajIBxJBSu-80KGy2MpyOdb9JjuljLYeuRX11dKIanm1Wuacvp_qFewhnfJUN7TC9H2njYa2uuAPKJWSKdwPxuHMM_acij2nYtfQasubtSWm-S_zP_bX_7BTHi3vLbfAFUhpZx_kL_Z1pP0</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Steinert, Norman J</creator><creator>Debolskiy, Matvey V</creator><creator>Burke, Eleanor J</creator><creator>García-Pereira, Félix</creator><creator>Lee, Hanna</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9634-3627</orcidid><orcidid>https://orcid.org/0000-0002-2158-141X</orcidid><orcidid>https://orcid.org/0000-0001-8491-1175</orcidid><orcidid>https://orcid.org/0000-0002-2003-4377</orcidid><orcidid>https://orcid.org/0000-0002-2154-5857</orcidid></search><sort><creationdate>20240101</creationdate><title>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</title><author>Steinert, Norman J ; Debolskiy, Matvey V ; Burke, Eleanor J ; García-Pereira, Félix ; Lee, Hanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assessments</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Coupling</topic><topic>cryosphere</topic><topic>Earth system models</topic><topic>Estimates</topic><topic>frozen ground</topic><topic>Global warming</topic><topic>ground temperatures</topic><topic>Hydrology</topic><topic>Permafrost</topic><topic>Soil hydrology</topic><topic>soil thermodynamics</topic><topic>Soils</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinert, Norman J</creatorcontrib><creatorcontrib>Debolskiy, Matvey V</creatorcontrib><creatorcontrib>Burke, Eleanor J</creatorcontrib><creatorcontrib>García-Pereira, Félix</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinert, Norman J</au><au>Debolskiy, Matvey V</au><au>Burke, Eleanor J</au><au>García-Pereira, Félix</au><au>Lee, Hanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>14033</spage><pages>14033-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km 2 , where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad10d7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9634-3627</orcidid><orcidid>https://orcid.org/0000-0002-2158-141X</orcidid><orcidid>https://orcid.org/0000-0001-8491-1175</orcidid><orcidid>https://orcid.org/0000-0002-2003-4377</orcidid><orcidid>https://orcid.org/0000-0002-2154-5857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2024-01, Vol.19 (1), p.14033
issn 1748-9326
1748-9326
language eng
recordid cdi_proquest_journals_2899678705
source NORA - Norwegian Open Research Archives; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry
subjects Assessments
Carbon
Climate change
Climate models
Coupling
cryosphere
Earth system models
Estimates
frozen ground
Global warming
ground temperatures
Hydrology
Permafrost
Soil hydrology
soil thermodynamics
Soils
Thermodynamics
title Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20permafrost%20definitions%20for%20global%20permafrost%20area%20estimates%20in%20CMIP6%20climate%20models&rft.jtitle=Environmental%20research%20letters&rft.au=Steinert,%20Norman%20J&rft.date=2024-01-01&rft.volume=19&rft.issue=1&rft.spage=14033&rft.pages=14033-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad10d7&rft_dat=%3Cproquest_cross%3E2899678705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899678705&rft_id=info:pmid/&rfr_iscdi=true