Loading…
Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models
Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the ca...
Saved in:
Published in: | Environmental research letters 2024-01, Vol.19 (1), p.14033 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3 |
container_end_page | |
container_issue | 1 |
container_start_page | 14033 |
container_title | Environmental research letters |
container_volume | 19 |
creator | Steinert, Norman J Debolskiy, Matvey V Burke, Eleanor J García-Pereira, Félix Lee, Hanna |
description | Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km
2
, where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs. |
doi_str_mv | 10.1088/1748-9326/ad10d7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899678705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2bc48fef06a04c5da4edfe2f33dcd27f</doaj_id><sourcerecordid>2899678705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxRtRcF29ewx48OK4lY_upI8y7OrAih70aqhOKkOGnk6b9Aj-92a2dd2DeEmFx6sfVfWa5iWHtxyMueJamU0vRXeFnoPXj5qLe-nxg__T5lkpB4BWtdpcNN-uf-B4wiVOezZTPmLIqSzMU4hTXGKaCgsps_2YBhwfOjATMipLPOJChcWJbT_uPnfMjXcKOyZPY3nePAk4Fnrxu142X2-uv2w_bG4_vd9t391unNJy2Tg0vifiNCBI46HrtEbgOvChM0TSK-FgGIAPxkEHPgBAp1vRKi6xJScvm93K9QkPds51hvzTJoz2Tkh5bzEv0Y1kxeCUCRSgQ1Cu9ajIBxJBSu-80KGy2MpyOdb9JjuljLYeuRX11dKIanm1Wuacvp_qFewhnfJUN7TC9H2njYa2uuAPKJWSKdwPxuHMM_acij2nYtfQasubtSWm-S_zP_bX_7BTHi3vLbfAFUhpZx_kL_Z1pP0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899678705</pqid></control><display><type>article</type><title>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Steinert, Norman J ; Debolskiy, Matvey V ; Burke, Eleanor J ; García-Pereira, Félix ; Lee, Hanna</creator><creatorcontrib>Steinert, Norman J ; Debolskiy, Matvey V ; Burke, Eleanor J ; García-Pereira, Félix ; Lee, Hanna</creatorcontrib><description>Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km
2
, where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad10d7</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Assessments ; Carbon ; Climate change ; Climate models ; Coupling ; cryosphere ; Earth system models ; Estimates ; frozen ground ; Global warming ; ground temperatures ; Hydrology ; Permafrost ; Soil hydrology ; soil thermodynamics ; Soils ; Thermodynamics</subject><ispartof>Environmental research letters, 2024-01, Vol.19 (1), p.14033</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</citedby><cites>FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</cites><orcidid>0000-0002-9634-3627 ; 0000-0002-2158-141X ; 0000-0001-8491-1175 ; 0000-0002-2003-4377 ; 0000-0002-2154-5857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2899678705?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,26567,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Steinert, Norman J</creatorcontrib><creatorcontrib>Debolskiy, Matvey V</creatorcontrib><creatorcontrib>Burke, Eleanor J</creatorcontrib><creatorcontrib>García-Pereira, Félix</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><title>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km
2
, where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs.</description><subject>Assessments</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Coupling</subject><subject>cryosphere</subject><subject>Earth system models</subject><subject>Estimates</subject><subject>frozen ground</subject><subject>Global warming</subject><subject>ground temperatures</subject><subject>Hydrology</subject><subject>Permafrost</subject><subject>Soil hydrology</subject><subject>soil thermodynamics</subject><subject>Soils</subject><subject>Thermodynamics</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc2LFDEQxRtRcF29ewx48OK4lY_upI8y7OrAih70aqhOKkOGnk6b9Aj-92a2dd2DeEmFx6sfVfWa5iWHtxyMueJamU0vRXeFnoPXj5qLe-nxg__T5lkpB4BWtdpcNN-uf-B4wiVOezZTPmLIqSzMU4hTXGKaCgsps_2YBhwfOjATMipLPOJChcWJbT_uPnfMjXcKOyZPY3nePAk4Fnrxu142X2-uv2w_bG4_vd9t391unNJy2Tg0vifiNCBI46HrtEbgOvChM0TSK-FgGIAPxkEHPgBAp1vRKi6xJScvm93K9QkPds51hvzTJoz2Tkh5bzEv0Y1kxeCUCRSgQ1Cu9ajIBxJBSu-80KGy2MpyOdb9JjuljLYeuRX11dKIanm1Wuacvp_qFewhnfJUN7TC9H2njYa2uuAPKJWSKdwPxuHMM_acij2nYtfQasubtSWm-S_zP_bX_7BTHi3vLbfAFUhpZx_kL_Z1pP0</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Steinert, Norman J</creator><creator>Debolskiy, Matvey V</creator><creator>Burke, Eleanor J</creator><creator>García-Pereira, Félix</creator><creator>Lee, Hanna</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9634-3627</orcidid><orcidid>https://orcid.org/0000-0002-2158-141X</orcidid><orcidid>https://orcid.org/0000-0001-8491-1175</orcidid><orcidid>https://orcid.org/0000-0002-2003-4377</orcidid><orcidid>https://orcid.org/0000-0002-2154-5857</orcidid></search><sort><creationdate>20240101</creationdate><title>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</title><author>Steinert, Norman J ; Debolskiy, Matvey V ; Burke, Eleanor J ; García-Pereira, Félix ; Lee, Hanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assessments</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Coupling</topic><topic>cryosphere</topic><topic>Earth system models</topic><topic>Estimates</topic><topic>frozen ground</topic><topic>Global warming</topic><topic>ground temperatures</topic><topic>Hydrology</topic><topic>Permafrost</topic><topic>Soil hydrology</topic><topic>soil thermodynamics</topic><topic>Soils</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinert, Norman J</creatorcontrib><creatorcontrib>Debolskiy, Matvey V</creatorcontrib><creatorcontrib>Burke, Eleanor J</creatorcontrib><creatorcontrib>García-Pereira, Félix</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinert, Norman J</au><au>Debolskiy, Matvey V</au><au>Burke, Eleanor J</au><au>García-Pereira, Félix</au><au>Lee, Hanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>14033</spage><pages>14033-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Global permafrost regions are undergoing significant changes due to global warming, whose assessments often rely on permafrost extent estimates derived from climate model simulations. These assessments employ a range of definitions for the presence of permafrost, leading to inconsistencies in the calculation of permafrost area. Here, we present permafrost area calculations using 10 different definitions for detecting permafrost presence based on either ground thermodynamics, soil hydrology, or air–ground coupling from an ensemble of 32 Earth system models. We find that variations between permafrost-presence definitions result in substantial differences of up to 18 million km
2
, where any given model could both over- or underestimate the present-day permafrost area. Ground-thermodynamic-based definitions are, on average, comparable with observations but are subject to a large inter-model spread. The associated uncertainty of permafrost area estimates is reduced in definitions based on ground–air coupling. However, their representation of permafrost area strongly depends on how each model represents the ground–air coupling processes. The definition-based spread in permafrost area can affect estimates of permafrost-related impacts and feedbacks, such as quantifying permafrost carbon changes. For instance, the definition spread in permafrost area estimates can lead to differences in simulated permafrost-area soil carbon changes of up to 28%. We therefore emphasize the importance of consistent and well-justified permafrost-presence definitions for robust projections and accurate assessments of permafrost from climate model outputs.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad10d7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9634-3627</orcidid><orcidid>https://orcid.org/0000-0002-2158-141X</orcidid><orcidid>https://orcid.org/0000-0001-8491-1175</orcidid><orcidid>https://orcid.org/0000-0002-2003-4377</orcidid><orcidid>https://orcid.org/0000-0002-2154-5857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2024-01, Vol.19 (1), p.14033 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_proquest_journals_2899678705 |
source | NORA - Norwegian Open Research Archives; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | Assessments Carbon Climate change Climate models Coupling cryosphere Earth system models Estimates frozen ground Global warming ground temperatures Hydrology Permafrost Soil hydrology soil thermodynamics Soils Thermodynamics |
title | Evaluating permafrost definitions for global permafrost area estimates in CMIP6 climate models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20permafrost%20definitions%20for%20global%20permafrost%20area%20estimates%20in%20CMIP6%20climate%20models&rft.jtitle=Environmental%20research%20letters&rft.au=Steinert,%20Norman%20J&rft.date=2024-01-01&rft.volume=19&rft.issue=1&rft.spage=14033&rft.pages=14033-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad10d7&rft_dat=%3Cproquest_cross%3E2899678705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-ca8d9ee1eba038d06677a017f1b68ee3d42c0bb01b8c060df00067525413a5ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899678705&rft_id=info:pmid/&rfr_iscdi=true |